Cahoots: A Mobile Agent Bidirectional One-to-Many

Communications Framework

Verok Istvan
<mailto:vi@shamir.ebizlab.hit.bme.hu>
Thesis Advisor:

Dr. Vajda Istvan
<mailto:vajda@tsys.hit.bme.hu>
Department of Telecommunication

Budapest University of Technology and Economics

2001.05.20.

Contents

1 Preface
2 The Road to Mobile Agents

3 FIPA Standards

3.1 Abstract Architectureo L o
3.2 Agent Managemento Lo L
3.3 Agent Message Transport
3.4 Agent Communication L0 Lo
3.4.1 Communicative Acts
3.4.2 Content Languages
3.4.3 Interaction Protocols oL
3.5 Applicationso
4 Design
4.1 Requirements
4.2 Use Cases o v o i i e e
421 Root e
4.2.2 Injectable
4.2.3 Site.
4.3 Architecture L

5 Implementation

5.1 Tools Used e
5.1.1 Java e
5.1.2 Grasshopper Lo
5.1.3 FIPA-OS. e

5.2 Sample Applications

5.2.1 Chat s
5.2.2 InferMarket

Evaluation

6.1 Performance
6.1.1 Reliabilityo
6.1.2 Speed
6.1.3 Scalability

6.2 Global Behavior
6.2.1 Interoperability oo
6.2.2 Structure Distortion over Time

Postmortem

Glossary

List of Acronyms

41
41
42
42
42
44
44
45

46

48

54

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3
5.4
9.5
2.6

6.1

Agents Find Each Other through a Directory Service 10
Composition of a Transport Message 12
Agent Life Cycle 13
Agent Management Reference Model 14
Nomadic Application L 21
Ontology Equivalence Testing, 22
Cahoots Concepts e 27
Use Cases Involving a Root 28
Use Case Diagram: Root Creates a Structure. 28
Use Case Diagram: Root Sends a Message Downstream 28
Use Cases Involving an Injectable 29
Use Cases Involving a Site L. 31
Interface and Class Hierarchy 33
Screenshot: Chat Site. oL o 38
Screenshot: Chat Injectable 38
Screenshot: Chat Rooto o . 39
Screenshot: InferMarket Site 0oL 39
Screenshot: InferMarket Injectable 39
Screenshot: InferMarket Root o 0. 40
Logical Topology of a Typical Experiment 43

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

6.1
6.2

Abstract Architecture Specifications 10
Agent Management Specifications o000 13
Message Transport Service Specifications 15
Message Content Representation Specifications 16
Message Envelope Representation Specifications 16
Message Transport Protocol Specifications 16
Message Structure Specifications 17
Communicative Acts Specifications 17
Content Languages Specifications 17
Interaction Protocols Specifications 18
Advanced Services Specifications. 0L 21
Application Domain Specifications 23
Measured Deployment Times 42
Statistical Breakdown of a Sample InferMarket Run 43

Chapter 1
Preface

Agent technology is still in its infancy. Research has cleared up basic theoretical and
practical questions, these are slowly being standardized. Most prominently, message format
protocols are established. More complex ingredients, however, are lacking. My thesis
presents one such ingredient, a communications framework that mobile agents may find
useful in one-to-many scenarios.

Chapter 2 presents a brief historical overview, starting from the grass roots, and high-
lights those cornerstones that were instrumental in the formation of today’s agent technol-
ogy.

Chapter 3 elaborates on the current efforts at the standardization of intelligent agents.
The foremost standards authority is the Foundation for Intelligent Physical Agents (FIPA).
The complete set of current FIPA standards is reviewed to elucidate the strengths and
uncertainties in agent technology as we understand it now. Stable areas of knowledge are
identified, along with directions of current research.

Chapter 4 focuses on the framework’s design. Its applicability and goals (the require-
ments) are discussed first, along with identification of the various user roles that could
benefit from it. Activities (use cases) available to these roles follow from who they are
and what they want to achieve. A full use case catalog is enumerated. To provide all this
functionality, an architecture is designed, with an emphasis on lightweight footprint and
interoperation. Where appropriate, the architecture’s innards are also explained in terms
of familiar design patterns.

Chapter 5 takes a look at the tools used for implementation and testing, touching upon
each briefly. Sample test applications that were also implemented are described.

Chapter 6 examines the finished product with respect to its stated goals, performance,

and the dynamic properties of the architecture’s behavior. Advantages and shortcomings
are evaluated to determine where this framework (and, more generally, the architecture it
implements) can be used to the most advantage.

Chapter 7 draws several conclusions that emerged from this work, concerning both this

framework and agent technology in general.

Quotation Acknowledgements

The glossary contains design pattern descriptions taken verbatim from the [GoF1994] cat-
alog’s Intent sections. The FIPA standards inspired some of the illustrations and a handful

of glossary item wordings.

Note

The name of the framework, Cahoots, is just a fancy word that crossed my mind while

thinking about collaborating agents.

Chapter 2

The Road to Mobile Agents

In the beginning, there were assembly languages only. They consisted of cryptic mnemonics
that translated directly to machine instructions, operating with concepts that exposed the
particular machine’s internal architecture completely. Programmers were free to arrange
every single detail just the way they wanted it. With this freedom also came the obligation
to do all of it. Running the software instructed the executing processor to perform the listed
operations step-by-step, and nothing more. This quickly became burdensome for all but
the most basic needs. Programmers found themselves repeatedly telling their computers
how to perform certain common tasks. Since computers are great at handling repetitive
jobs, it seemed logical that computers should somehow lend a hand with these recurring
details. For this, various languages were created. Most of these didn’t feature very much.
Aside from a bit more readable syntax, they represented the same jump-here-and-do-this
mindset. The first real change came in the early 1970s with structured programming.

Its most revolutionary aspect — subroutines — allowed programmers to break their
code into chunks, grouping related parts together and separating unrelated sections. Sub-
routines enabled a hierarchical organization of the code: any given task could be composed
of smaller tasks, plus some glue code to round out what remained undone in between. Also,
compound data structures were conceived, easing the management of many instances of
similar data items. Arrays, lists, structures, hash tables — first-class citizens in some
languages, built from first principles in others.

The second paradigm shift, object orientation, started in the 1980s. Structuring pro-
grams into discrete levels of abstraction, is often not straightforward and even more often
just plain awkward. The dichotomy of code and data is not very natural to a non-expert.

Thus, instead of forcing strict hierarchies, a free-form modeling approach emerged. Most

problem domains can be described using participants that interact with each other. The
idea was to let programmers model these participants and their interactions directly. (Par-
ticipants were termed “objects” and interactions were termed “messages” in object-oriented
(O0) parlance.) Code and data are no longer the two opposite sides of the coin they used
to be: they are integrated (“encapsulated”) into seamless bundles that are opaque from the
outside. It doesn’t matter how an object is actually implemented, its actual code and data
structures are nearly irrelevant. What matters is its interface: the ways it can interact
with the world outside.

Parallel to these developments, computer networks appeared. The large community of
software developers was using isolated computers, that is, machines that stood on their own.
Even though the first tentative experiments to link up multiple computers to communicate
with each other were performed back in the late 1960s, first real network exposure came
only in the mid-1980s. At that time, those links were used for little else that data transfer.
E-mail quickly became the killer app, and various applications sent each other data over
the wire.

Within a few years, programmers wanted to construct software that runs not only on
a single machine, but also with various parts located on separate network nodes. This was
relatively easy to do: after all, it was still data transfer between software components. Why
should components be unable to use other components just because they were on different
hosts? Sending subroutine input parameters and returning their result values over the
wire (“remote procedure calls”) was a huge development in the early 1990s. Distributed
computing looked promising.

A dilemma remained, however. Object-oriented programming, after all, consisted of
interactions — and participants, too! Objects themselves, since they included code, did
not migrate as easily on a network as pure data did. In order for an object to be meaningful
everywhere, all nodes involved needed to be able to run its code. This were possible if all
nodes used the same hardware — an unrealistic expectation in real life. At the very least,
then, code had to be interpreted and made to run with the same effects on diverse hardware.
This proved to be a more workable approach.

The final piece of theoretical underpinning appeared in those years, too. Object migra-
tion is perfect for proactive agents that work to achieve some goal on behalf of the person
or company that runs the agent. Not tied to any particular location, an agent could act
as independently as it saw fit. By migrating to various hosts, it may save network traffic

and keep the communication local. Thus, mobile agent technology was born.

Chapter 3

FIPA Standards

Agent technology is under vigorous research worldwide. Many independent technical en-
deavors employ agents in solving their particular problems. As a result, many competing
ideas have emerged to solve the most burning questions. In order to avoid needless du-
plication of efforts and promote product interoperability, many large industrial companies
(such as Fujitsu, Hewlett-Packard, IBM, Intel, Lockheed Martin, Lucent, Mitsubishi, Nor-
tel, and many others), with the support of the international agent research community,
have formed the Foundation for Intelligent Physical Agents (FIPA) in 1996.

FIPA standards are based on industry “status quo” feedback in a bottom-up fashion,
hence they reflect the most current trends in agent software. This implies that they are still
in a state of flux. None has yet made it past Experimental status (some are not even past
Preliminary). In past years, FIPA standards (FIPA ’97 and FIPA 98, respectively) were
contiguous documents. Beginning in 2000, however, the suite of standards has been broken
into smaller fragments (each identified by a five-digit number), to be evolved separately.
Out of the 90 standards fragments FIPA has produced so far, only 40 survive. The rest
have been deprecated, their content incorporated into the surviving fragments or simply
dropped.

What follows is a quick overview of current FIPA standards (hefty 700 pages in their
entirety), grouped by logical functionality. It presents the conceptual view of intelligent
agents as envisaged by FIPA | and shows how these ingredients combine to form the whole

architecture.

00001 | FIPA Abstract Architecture Specification
00089 | FIPA Domains and Policies Specification

Table 3.1: Abstract Architecture Specifications

: _\ up
Agentl
loofup lookup

Agent4

Agent2 Agent3

Figure 3.1: Agents Find Each Other through a Directory Service

3.1 Abstract Architecture

|[FIPA00001]| defines many terms and puts them into high-level context, a lot of them to
be precisely defined and enumerated in other specifications. A quick rundown follows.

An AGENT is an autonomous piece of software that works in order to further a well-
defined goal on behalf of the principal (person, company) that started it. For this, they
may model relevant aspects of the world, and reason about it. Agents that reason at an
advanced level are called INTELLIGENT AGENTS. FIPA standards codify the interfaces
these agents present to the outside for various functionalities, not internal implementation
details.

Agents offer various services to the outside world, and they use services presented to
them. A SERVICE is defined in terms of a set of actions that it supports (very object-
oriented thinking). The most basic service is a DIRECTORY SERVICE: agents may register
with directory services in order to be queried, found and used by other agents (see figure
3.1). A DIRECTORY ENTRY for an agent contains at least the agent’s NAME (unique) and
its LOCATOR (contact address), and may also contain ATTRIBUTES (key-value tuples) that
further describe the entry.

Agents communicate using MESSAGEs. These messages are built in a logical fashion
(that is, a sending agent expects that the result of sending a message will help it in
achieving a goal), and their CONTENTs are expressed in the AGENT COMMUNICATION
LANGUAGE (ACL). The most prominent feature of the ACL is that it consists of speech

10

acts (also called communicative acts, CAs). SPEECH ACTs are utterances that reflect the
speaker’s intents, with the property that by simply speaking them, the speaker commits

by

the given act. Examples may be given in the stylized form “I hereby inform...” or “I

2

hereby request...” or “I hereby disconfirm...”. Utterances that cannot be put in this form
are not speech acts. For example, saying “I hereby inform you that your train is 5 minutes
late” does the informing as well, but saying “I hereby solve this equation” does not actually
solve the equation. The former is a speech act, the latter is not. (For a full list of speech
acts, see section 3.4.1.)

Speech acts invariably contain references that qualify the context in terms of the ap-
plication problem domain. These references are expressed using a CONTENT LANGUAGE.
FIPA defines several content languages, each with different strengths and weaknesses in
expressive power. First order predicate logic may be best expressed in SL, while Con-
straint Satisfaction Problems are candidates for CCL. (For a full list of content languages,
see section 3.4.2) These content languages, in turn, refer to various concrete concepts of a
problem domain.

These concepts are part of an ONTOLOGY, a set of symbols together with an associated
interpretation that may be shared by a community of agents or software. An ontology
includes a vocabulary of symbols referring to objects in the subject domain, as well as
symbols referring to relationships that may be evident in the domain. For most agents,
the ontologies they can handle are implicitly given by their implementations. By sharing a
common ontology, agents ascribe the same meaning to the same symbols, thus communi-
cation can take place. The parties involved will need to understand the common ACL, the
content language used (these are standardized by FIPA), and they need to share a com-
mon ontology in order to meaningfully communicate (this should preferably come from
widespread industrial adoption in the given problem domain).

Having formed a content to be sent, the agent transforms it into a PAYLOAD (a par-
ticular ENCODING REPRESENTATION of the content, possibly with some security and con-
fidentiality features), and attaches an ENVELOPE, which contains at least the sender and
the recipient of the message. The payload and the envelope together form a TRANSPORT
MESSAGE (see figure 3.2), which is then sent to the recipient’s address via an appropri-
ate TRANSPORT (provided by various message transport services). A recipient may have
more than one TRANSPORT DESCRIPTIONs (physical addresses), thus it may be possibly
reachable via more than one transports.

In this way, the abstract architecture provides for two kinds of interoperability: trans-

11

Payl oad
Message
Message
Sender: agent - name Payl oad
Recei ver: agent - name _ Sender: agent - nane
[Mencading | Recei ver: agent-name Addressing Message
Message content Sender: agent - name
Message cont ent Recei ver: agent-name

| Message content

Figure 3.2: Composition of a Transport Message

port interoperability and message representation interoperability. Transport interoperabil-
ity means a physical way of getting a packet of bytes from one agent to another, while
message representation interoperability is enabling all agents to interpret those bytes as a
message with a well-defined content, so that it carries the same meaning for everyone.
[FTPA00089| talks about high-level constraints (PERMISSIONs and OBLIGATIONS) that
agent platforms may wish to enforce over the behavior of agents they serve (i.e. never use
more than an allotted slice of processor time, no access to files outside the required working
data set, truthful reporting on internal state). Such constraints could make up a POLICY,
collected into one place so that it may be uniformly enforced over multiple agents. As a
policy enforcement mechanism, DOMAINs may be set up so that belonging agents obey the
domain policy. Enforcement may take the form of guards, or access points, that grant or
deny permission to access a resource on a given AP. Resources could only be dereferenced
through a permissions-checking guard. Permissions are inherently more easily enforced
than obligations, since violation of an obligation can only be detected in hindsight. A
tentative obligation enforcement mechanism could be a reputation service: occurrences of
misbehavior are reported and widely publicized, so that future customers can quickly avoid
untrustworthy service providers. This could be a powerful deterrent in a stable services

market.

3.2 Agent Management

[FTPA00023| instantiates many concepts that were only conceptually defined in the ab-
stract architecture. A new concept, essential to implementation, is the Agent Platform

(AP). AGENT PLATFORMSs provide execution time and space to agents. APs are not lim-

12

00023 | FIPA Agent Management Specification
00087 | FIPA Agent Management Support for Mobility Specification

Table 3.2: Agent Management Specifications

Suspended

Figure 3.3: Agent Life Cycle

ited to be hosts connected to a network. Processes running on the same host could be
separate APs. A cluster of load-balanced hosts may form one AP, as far as the outside
world is concerned. Such implementation details do not cloud the fundamental differ-
ence between agent communications “local” to the AP and “remote” communications that
traverse multiple APs.

Agents are addressed through identifiers. An agent identifier is composed of a logical
name (permanent label from inception until termination), several transport addresses (usu-
ally pointing straight to the AP the agent is currently on, or to an address that forwards
to the current AP), and resolvers. RESOLVERs are simply other agents that may be able
to return a live transport address for the agent in question, used when the other addresses
fail. Resolvers are denoted again by agent identifiers. What this means is that resolvers
themselves may be mobile, just so long as some stationary agents or further resolvers exist
to contact them. Indirection ad infinitum.

Agents in an AP may only be in one of five states: Initiated, Active, Suspended (forced
inactivity), Waiting (active, but waiting for some external factor, such as long-running
I/O operations), Transit (in the process of migrating to another AP). State change is only
possible by becoming Active first, then changing to another state (see figure 3.3).

Agents must register their identifiers with the AGENT MANAGEMENT SYSTEM (AMS)

13

Sof t war e

Agent Pl atform
Agent ANVS DF
N\ A o
MTS
MIS
Agent Pl atform

Figure 3.4: Agent Management Reference Model

component of the AP they are running on (WHITE PAGES SERVICE). The identifiers may
later be deregistered, modified, and looked up. The AMS may stop and restart agents, or
ask them to migrate, with the caveat that the agent may choose to ignore the request. The
only request all FIPA-compliant agents must honor is QUIT.

Agents resident on an AP should enlist their services in the AP’s DIRECTORY FACILI-
TATOR. The DF gives agents the chance to look up other agents and be looked up in turn
(YELLOW PAGES SERVICE). Agent platforms are not required to run DFs; in fact, multiple
APs may use one DF (thus creating a federation). DFs are also not responsible for the
data they carry. Their respective owners should refresh out-of-date information.

Communication between agents residing on separate agent platforms is achieved using
a MESSAGE TRANSPORT SERVICE (MTS) (see figure 3.4).

[FTPA00087| acknowledges that mobile agents may migrate between agent platforms.
It outlines the theoretical steps of simple and full mobility protocols, the difference being
that with simple protocols, migration is handled entirely by the AP. Full mobility protocols
let the agent handle mobility step-by-step, thus enabling customization — at the cost of
increased implementation complexity. For example, cloning may be easily achieved using
a full mobility protocol by simply omitting the steps that terminate the agent’s local copy
after a successful migration; and another agent may be invoked (created) on a remote AP
out of nowhere by cloning but not sending it any local data.

Mobile agent descriptions (to be registered with the AMS) feature operating system

labels, language labels, and agent platform labels. These may be needed to determine

14

| 00067 | FIPA Agent Message Transport Service Specification |

Table 3.3: Message Transport Service Specifications

whether migration to a given AP is possible.

A brief appendix considers integration with the CORBA Mobile Agent Facility stan-
dard. MAF (also called MASIF) is CORBA’s attempt at mobile agents. It does not stan-
dardize, though, any code or data mobility capabilities, only a way to negotiate (through
CORBA method calls) whether two endpoints both support the same runtime environment
for object execution. This includes negotiating the operating system, language, and agent
platform software on the endpoints. The standard’s only concrete instantiation for these
capabilities is, ironically, Java RMI. As such, MAF is not even an agent mobility nego-
tiation standard, but an object mobility negotiation standard — one level of abstraction

lower.!

3.3 Agent Message Transport

Message Transport Services (MTS), defined in [FIPA00067|, are needed because agents
carry out their respective goals in cooperation, enlisting the help of other agents where
appropriate. For this, they need to communicate with other agents. Other agents are
contacted via transports. A transport is a communications scheme, and a transport address
points to the current location of an agent in that scheme. A concrete implementation of
an MTS is called an Agent Communication Channel (ACC).

Messages consist of two separate parts: envelope and content. The headers that make
up the envelope are accumulated in transit (similarly to reach headers accumulating on
normal e-mail), with each AP adding headers composed of name-value pairs. The headers
:to, :from, and :acl-representation are required initially. Multiple recipients may be
listed, even multiple transport addresses for any given recipient. In this case, the transport
addresses will be tried one after another until successful delivery.

The message content is simply a speech act of the ACL, with the intention that its
being processed by recipients brings about some desired goal.

Prior to being sent over the wire, ACL content is SERIALIZED into either a binary format
[FTPA00069], a string [FIPA00070], or XML [FTPA00071]. The envelope is serialized into

I'MAF has been published live on the Web in early 2000, and its IDL interface still contains typos that
even prevent it from compiling. The fact that all this time nobody bothered to correct the standard ought
to say something about the number of people who actually use it.

15

00069 | FIPA ACL Message Representation in Bit-Efficient Encoding Specification
00070 | FIPA ACL Message Representation in String Specification
00071 | FIPA ACL Message Representation in XML Specification

Table 3.4: Message Content Representation Specifications

00085 | FIPA Agent Message Transport Envelope Representation in XML Spec-
ification

00088 | FIPA Agent Message Transport Envelope Representation in Bit-Efficient
Encoding Specification

Table 3.5: Message Envelope Representation Specifications

XML [FIPA00085] or a binary format [FIPA00088|. The old way (serializing the envelope
into a LISP-like string) is explicitly deprecated, reason unknown.

Once the packet of bits to send is assembled, it may be sent using a variety of transports,
depending on the available transport addresses.

[FIPA00075] is a refined version of past years’ sole CORBA interface: it no longer
requires the message to be a string, and the envelope is handled separately from the
content. The packet is sent by a single method call: message().

|[FIPA00076| sends the packet over the Wireless Application Protocol (WAP) stack,
which is used in handheld mobile phones and other devices.

|[FTPA00084| sends it in an HTTP request, using the POST request method. This is a

tried-and-true protocol of the Internet, readily handled by any web server.

3.4 Agent Communication

|[FTPA00061]| specifies that a message’s contents include the sender and the receiver of the
message, and, of course, one speech act. Optional fields :1anguage and :ontology identify
the content language and ontology used in this speech act — this is crucial for properly
interpreting the contents. The :protocol field may denote an interaction protocol, if one

is used. Any agent that responds to a message that has an identifier in its :reply-with

00075 | FIPA Agent Message Transport Protocol for IIOP Specification
00076 | FIPA Agent Message Transport Protocol for WAP Specification
00084 | FIPA Agent Message Transport Protocol for HI'TP Specification

Table 3.6: Message Transport Protocol Specifications

16

| 00061 | FIPA ACL Message Structure Specification |

Table 3.7: Message Structure Specifications

‘ 00037 ‘ FIPA Communicative Act Library Specification ‘

Table 3.8: Communicative Acts Specifications

field must put the same identifier into the response’s :in-reply-to field. This makes it
easy for an agent to track individual conversations whose constituent messages may arrive

interleaved with those of other conversations.

3.4.1 Communicative Acts

|[FTPA00037| presents a catalog of communicative acts that a message may contain. Re-
member that these are utterances of intent that are performed at once by being uttered.
They are Accept-Proposal, Agree, Cancel, Call-for-Proposal, Confirm, Disconfirm,
Failure, Inform, Inform-If, Inform-Ref, Not-Understood, Propagate, Propose, Proxy,
Query-If, Query-Ref, Refuse, Reject-Proposal, Request, Request-When, Request-Whenever,
and Subscribe. They are presented with formal descriptions and explanations.

One caveat, though: footnote 3 in section 3.5 (Confirm) says: “Arguably there are
situations where an agent might not want to be sincere, for example to protect confidential
information. We consider these cases to be beyond the current scope of this specification.”

What this means is that the formal descriptions always assume sincerity of the sender,
which belief may be unfounded in real-world applications. So take them with a healthy

grain of salt.

3.4.2 Content Languages

[FTPA00007| is nothing but a statement of administrativia on FIPA’s handling of new

content language proposals. In order to qualify as a content language, expressive power

00007 | FIPA Content Languages Specification
00008 | FTIPA SL Content Language Specification
00009 | FTPA CCL Content Language Specification
00010 | FIPA KIF Content Language Specification
00011 | FIPA RDF Content Language Specification

Table 3.9: Content Languages Specifications

17

00025 | FIPA Interaction Protocol Library Specification

00026 | FIPA Request Interaction Protocol Specification

00027 | FIPA Query Interaction Protocol Specification

00028 | FIPA Request When Interaction Protocol Specification
00029 | FIPA Contract Net Interaction Protocol Specification
00030 | FIPA Iterated Contract Net Interaction Protocol Specification
00031 | FIPA English Auction Interaction Protocol Specification
00032 | FIPA Dutch Auction Interaction Protocol Specification
00033 | FIPA Brokering Interaction Protocol Specification
00034 | FIPA Recruiting Interaction Protocol Specification
00035 | FIPA Subscribe Interaction Protocol Specification

00036 | FIPA Propose Interaction Protocol Specification

Table 3.10: Interaction Protocols Specifications

must include at least one of: objects, propositions, and actions.

[FTPA0O0008| presents the single most widely used content language: SL (Semantic Lan-
guage). It is capable of expressing first-order predicate logic with various quantifications.
In order to ease practical implementation, three subsets are also defined: SLO only allows
representation of actions, determination of the result of a term representing a computation,
the completion of an action, and simple binary propositions. SL1 adds Boolean connectives
to represent propositional expressions. SL2 allows first order predicate and modal logic,
but is restricted to ensure that it must be decidable. Well-known effective algorithms exist
that can derive whether or not an FIPA SL2 well-formed formula is a logical consequence
of a set of well-formed formulae (for instance KSAT and Monadic).

[FTPA00009] specifies the CCL (Constraint Choice Language), which can also be useful:
it describes Constraint Satisfaction Problems and their solutions. CSP involves search over
a multidimensional solution space that is constrained by excluding invalid combinations
using posted constraint relations. This is a widely used technique.

|[FIPA00010] adds the draft ANSI standard KIF (Knowledge Interchange Format).

[FIPA00011] describes another content language: RDF (the World Wide Web Consor-
tium’s Resource Description Framework), as adopted by FIPA.

3.4.3 Interaction Protocols

INTERACTION PROTOCOLs are nothing more than templates for dialogs between multiple
agents. Message exchange patterns, really. They are all 1 or 2 pages long. |[FIPA00025|
introduces a notation that helps to keep them that terse. Agent UML (AUML) is an

18

extension to UML specifically geared towards messaging: agent lifelines with threads of in-
teraction, nested and parameterized protocols — these are elegant and compact notations.

|[FIPA00026]: Request: allows one agent to request another to perform some action and
the receiving agent to perform the action or reply, in some way, that it cannot.

[FTPA00027]: Query: the receiving agent is requested to perform some kind of inform
action. Requesting to inform is a query, and there are two query-acts: query-if and
query-ref and either act may be used to initiate this protocol. In either case, an inform
is used in response.

|[FIPA00028|: Request When: provides a framework for the request-when communica-
tive act. The initiator uses the request-when action to request that the participant do
some action once a given precondition becomes true. If the requested agent understands
the request and does not initially refuse, it will agree and wait until the precondition oc-
curs. Then, it will attempt to perform the action and notify the requester accordingly. If
after the initial agreement the participant is no longer able to perform the action, it will
send a refuse action to the initiator.

[FTPA00029|: Contract Net: one manager agent wishes to have some task performed by
one or more other agents and further wishes to optimize a function that characterizes the
task (price, time to completion, fair distribution of tasks). The manager solicits proposals
from other agents by issuing a call for proposals (cfp) act, which specifies the task and
any conditions the manager is placing upon the execution of the task. Any proposal from
a potential contractor includes preconditions that the contractor is setting out for the
task, which may be the price, or the time when the task will be done. Alternatively,
the contractor may refuse to propose. Once the deadline passes, the manager evaluates
any received proposals and selects agents to perform the task; one, several or no agents
may be chosen. The agents of the selected proposal(s) will be sent an accept-proposal
act and the others will receive a reject-proposal act. The proposals are binding on
the contractor, so that once the manager accepts the proposal, the contractor acquires an
obligation to perform the task. Once the contractor has completed the task, it sends a
completion message to the manager.

[FIPA00030]: Iterated Contract Net: an extension of the basic Contract Net IP, but
it differs by allowing multi-round iterative bidding. As with the Contract Net IP, the
manager issues the initial call for proposals with the act. The contractors then answer
with their bids as propose acts and the manager may then accept one or more of the bids,

rejecting the others, or may iterate the process by issuing a revised cfp. The intent is

19

that the manager seeks to get better bids from the contractors by modifying the call and
requesting new (equivalently, revised) bids. The process terminates when the manager
refuses all proposals and does not issue a new cfp, accepts one or more of the bids or the
contractors all refuse to bid.

|[FIPA00031]: English Auction: the auctioneer seeks to find the market price of a good
by initially proposing a price below that of the supposed market value and then gradually
raising the price. Each time the price is announced (a cfp act multicast to all participants),
the auctioneer waits to see if any buyers will signal their willingness to pay the proposed
price. In the real world, as soon as one buyer indicates that it will accept the price,
all bidders (by simply being in the same room) implicitly get to know about it. With
agents, the auctioneer notifies all bidders of the new bid (with explicit accept-proposal
and reject-proposal acts), then issues a new call for bids with an incremented price. The
auction continues until no buyers are prepared to pay the proposed price, at which point
the auction ends. If the last price that was accepted by a buyer exceeds the auctioneer’s
(privately known) reservation price, the good is sold to that buyer for the agreed price
(this may be a separate Request IP). If the last accepted price is less than the reservation
price, the good is not sold.

|[FIPA00032|: Dutch Auction: the auctioneer attempts to find the market price for a
good by starting bidding at a price much higher than the expected market value, then
progressively reducing the price. The auction terminates if one of the buyers accepts the
price or the auction reduces the price to the reserve price with no buyers. It is quite possible
that the auctioneer receives two or more bids for the same good, so multiple simultaneous
competing bids are all rejected, except for the winning bid, which is up to the auctioneer
to select.

|[FIPA00033|: Brokering: a broker offers a set of communication facilitation services to
other agents using some knowledge about the requirements and capabilities of those agents.
A typical example of brokering is one in which an agent can request a broker to find one
or more agents who can answer a query. The broker then determines a set of appropriate
agents to which to forward the query, sends it to those agents and relays their answers
back to the original requester.

|FIPA00034|: Recruiting: the same as Brokering, but the answers go directly to the
requester, not through the broker.

[FIPA00035]: Subscribe: an agent requests to be notified whenever a condition specified

in the subscription message becomes true.

20

00014 | FIPA Nomadic Application Support Specification
00079 | FIPA Agent Software Integration Specification
00086 | FIPA Ontology Service Specification

Table 3.11: Advanced Services Specifications

£ B

User on Wireless Connection User on Cable Network

Figure 3.5: Nomadic Application

|[FTPA00036|: Propose: an initiator agent proposes to the receiving agents that the
initiator will do the actions described in the propose communicative act when the receiving
agents accept this proposal. If they do (with an accept-proposal act), then the initiator

performs the proposed actions and returns a status response.

3.5 Applications

Application-level specifications mostly describe specific solutions to specific problem do-
mains. Three specifications in this group still command general interest:

Applications that may want to communicate over intermittent links are called NO-
MADIC APPLICATIONs. Examples for such behavior are business travelers and paramedic
support systems (wireless connections to ambulance vehicles and wireline LAN in hospital
campuses, the ambulance’s computer can be docked onto the cable network when it is
in the hospital — see figure 3.5). In such environments, message transport between APs
may be quality-constrained, and applications to use such MTSes may need to adjust their

demands accordingly (not to download images, for example).

21

canouf | age

butyrflyf X
bird

dog

Figure 3.6: Ontology Equivalence Testing

For this purpose, [FIPA00014] describes a Monitoring Agent (MA) to gather quite de-
tailed quality metrics of all quality-constrained message transport services. An enormous
number of quality metrics is defined (from packet loss ratio to jitter, and just about ev-
erything else), and the MA may choose to track any number of them. A separate Control
Agent (CA) is also specified to manage (establish, activate, close) connections on behalf
of user agents, based on the measurements obtained from the MA. Other, nomadic agents
may use this agent, for instance, to pool connections, or to automatically switch from one
form of communication to another when the quality of the previously used MTS drops
significantly.

[FTPA0O0079| clarifies the way agents should use legacy (non-agent) software. It recom-
mends that agents should refrain from accessing legacy software directly. For reusability
and conceptual purity, each legacy system should be wrapped in an appropriate wrapper
agent, and agents should use them only through the wrappers. To help agents to access
these wrappers in a uniform manner, an Agent Resource Broker (ARB) agent is described.
Basically, it is a directory of operational parameters for various legacy systems (for exam-
ple, a directory that lists network printers and their parameters: color, resolution, pages
per minute, cost, initialization data for different printing modes). Legacy printers should
store all their initialization data in an ARB, and provide a wrapper agent to properly
initialize the printer to handle a given request. Any agents that want to print should first
find a suitable printer by querying an ARB for printers with certain capabilities, then they
should contact a wrapper agent to actually contact the printer and operate it. No direct
contact exists between the client agent and the printer hardware at any time. Printer
control data comes from an ARB, a general printer driver is looked up in a DF, and the
driver itself manipulates the printer with the control data. This is a beautiful example of

the State design pattern.

22

00080 | FIPA Personal Travel Assistance Specification
00081 | FIPA Audio-Visual Entertainment and Broadcasting Specification

00082 | FIPA Network Management and Provisioning Specification
00083 | FIPA Personal Assistant Specification

Table 3.12: Application Domain Specifications

|[FIPA00086]| is, without doubt, the most futuristic specification among the FIPA docu-
ments. It presents a (barely functioning) Ontology Agent (OA) to act as a public repository
of explicit ontologies (as opposed to ones only implicitly present in the implementation of
agents). This component should enable manipulation of and queries into a given ontology,
equivalence testing of two ontologies (see figure 3.6), and translation from one to another,
if possible. Clearly, this raises a lot of issues in knowledge representation, nearly all of them
unsolved and hotly debated at present. Much future research is expected to concentrate
on this area.

[FTPA00080|, [FIPA00081], [FIPA00082| and [FTPA00083| are rather “hollow” specs, in
the sense that they don’t contain much in the way of agent technology. They specify
ontologies to describe parameters of several problem domains and enable interested par-
ties to negotiate them (travel reservation, TV content selection using program ratings,
resource allocation for virtual private network services, personal scheduling). No general

applicability beyond the specific problem domains, though.

23

Chapter 4
Design

As seen above, FIPA standards account for a wide range of implementation diversity that
occurs in various agent systems. Various interaction protocols, freely changeable ontologies,
specialized content languages, different message encodings, multiple transports. But these
standards are still basic building blocks. Complete working systems are built to solve
concrete problem domain issues (“business logic”), and these standards are just means to
that end.

FIPA message transport services (and the interaction protocols that use those services)
are explicitly one-to-one transports. But what if an agent wishes to converse with multiple
other agents? It has to handle every detail of communicating with many others: book-
keeping of where everyone else is, retries in case of failure are all distractions from writing
good business logic. Also, once they are written for a particular application, they are not
very reusable. Within one application, communication code is usually not easily replaced.
And this tightly integrated existing code does not help another application: it will have to
start almost from scratch.

Besides the reusability issue, the question of efficiency can also be raised. FIPA defined
the message transport service agent to be a stateless, fundamentally unicast service. This
is, of course, to preserve as much generality as possible. Statelessness is a virtue when
messages are sent to a wide variety of recipients, relatively few at a time, but a different
set each time. In this case, we don’t have any advance knowledge to optimize message
delivery, and the necessarily incurred channel establishment overhead must be paid for
each transmission.

If, however, a restricted set of participants wish to communicate, significant optimiza-

tions can be made. Channels can be preestablished, incurring the overhead only once,

24

and messages may subsequently be routed on the existent channels. This is even more
appealing when the messages are routed not according to recipients’ physical location, but
their relations to the sender. To make this last point clear, consider the following scenario.

Cherie wants to buy a mobile phone. She just gained access to the Internet, now she
wants to make full use of it. She grabs an agent, tells it to look for mobile phones under
$100, and releases the agent into the network. The agent visits all nearby vendors, plus
several individuals who want to trade their devices. But this visit is not a simple one-time
occasion: a communication substructure is erected between the various sellers and Cherie.
This structure connects all sellers to Cherie in a fashion so that the trade results at the
various sellers gradually trickle back to Cherie. Maybe not directly, maybe through several
intermediary sellers, but the results eventually get back to her.

For each seller visited, an individual copy of Cherie’s agent is migrated to the seller’s
host, linked up with the structure, and the negotiation starts. Local negotiation is so
fast, a sophisticated haggling can take place, with many thousands of offers and responses,
if need be — it would leave a Syrian bazaar seller gasping for breath. When an agent
instance feels that it has a pretty good position and should request further advice before
proceeding, it may tell other instances about its results so far. Those instances are said to be
“upstream” — that is, closer to Cherie — and may have even better results, since everybody
propagates their results upstream. When a reply is received, some “downstream” nodes
may want to cease their negotiation, since other sellers have negotiated with so much better
results. Thus, gradually, the set of negotiation partners is pruned and haggling continues
at the remaining nodes. As the results keep coming in, Cherie may decide to reject all or
accept one of them, in which cases the process is finished.

For this thesis, I designed and built such a communications framework (called Cahoots).

Below I list the requirements that shaped its initial design.

4.1 Requirements

The initial requirements are as follows, all of equal strength:

Integrated mobility support: This application scenario — one party communicating
with multiple partners, directing messages to form a rooted bidirectional tree-like struc-
ture — is more efficiently handled by a separate, stateful messaging middleware than
FIPA’s simple MTS. What’s more, integrating some form of mobility support can greatly

enhance the uses for such a component. Remember, in Cherie’s example, her agents mi-

25

grated out to the particular locations to conduct negotiations locally.

Interoperability: Agents technology is a fragmented field with respect to implemen-
tation. Many commercial and open-source agent platforms are available. Since FIPA
standardizes only the way they should exchange messages, some more restrictions need
to be imposed to achieve true agent mobility between disparate agent platforms. These
restrictions should be as few as possible.

Interchangeable topologies: A separate messaging component, simply by being loosely
coupled, is easily lifted out of the program’s design and replaced. This encourages change
and evaluation of different components to do the same job in different ways. For example,
Cherie could connect to the sellers in various topologies (not just in a single star topology, as
most naive one-to-many communication happens), depending on the qualities she expects.
The choice of the particular topology should not affect the rest of her business logic, it
should function unaffected. In particular, the exact number and identity of direct neighbors
in any topology at any time instance should not matter, it is an unnecessary detail.

Scalability: The implemented structures should help partition workload of the business
logic, compartmentalizing results procession should come as a natural consequence of being
distributed on many network nodes, and not as an afterthought.

Fault tolerance: The business logic should be as cushioned from network errors as
possible. This includes retries and graceful degradation, where applicable.

In the future, other aspects of such a component may also be considered important.

4.2 Use Cases

This subsection presents a detailed view of Cahoots, as seen by the business logic. Various
actors are identified, and all actions available to them are enumerated and explained.
The business logic of any complete system that utilizes Cahoots is cleanly divided into
three actors: root, injectable, and site. The root and the injectables act on behalf of
the entity that initiates the communication. The sites act on behalf of their respective
maintainers. Note the distinction between a deployable and an injectable: an injectable
is composed of pure business logic, while a deployable is an injectable plus whatever glue

code is also deployed to connect the injectable to the rest of the structure (see figure 4.1).

26

Agent platform

Upst ream nodes

A

Agent platform

15

. i .
I nj ect abl ¢ Site

4 [Depl oyabl e

Y

Figure 4.1: Cahoots Concepts

4.2.1 Root

The root actor is located at the root of the Cahoots structure. In the example, the root
actor is Cherie’s agent that looks up potential partners and initiates communication with
them. The root receives messages that come to it from downstream (all other nodes are
downstream, with respect to the root). The first thing a root does is create a new structure.
All subsequent operations are then carried out using that structure. Below, use cases that
require participation from the root are enumerated (see figure 4.2), and each is elaborated
upon, complete with use case diagrams. Omitted are the diagrams for use cases that consist

of a single operation or resemble another use case discussed earlier.

Create a new structure

A new structure is built using three pieces of data: the list of receptors (receptors receive
the deployables and introduce them into their local agent platform), the topology to be
used, and the injectables to be placed into the receptors (see figure 4.3).

27

CREATE
structure

SEND
downstream
a message

CLOSE
downstream
structure

RECEIVE
from downstream
amessage

RECEIVE
from downstream
close

Root User/Program

lookup
receptors
specify
topology
specify
injectables

Figure 4.3: Use Case Diagram: Root Creates a Structure

SEND
downstream
a message

X

Root User/Program I

compose
contents

Figure 4.4: Use Case Diagram: Root Sends a Message Downstream

28

RECEIVE RECEIVE
from upstream from upstream
a message close

SEND
upstream
a message

CLOSE
upstream
conversation

CLOSE
downstream
conversation

RECEIVE RECEIVE
from downstream from downstream
a message close

SEND
downstream
a message

CLOSE
conversation
with deployable

RECEIVE RECEIVE
from deployable from deployable
a message close

SEND
to deployable
amessage

Injectable Program

Figure 4.5: Use Cases Involving an Injectable

Send a message downstream

Once the structure is in place, sending a message is easily done without further overhead:
just compose its payload and send it (see figure 4.4).

Close the structure

Dismantles the structure, releasing all used resources on all participating agent platforms.

Receive a message from downstream

This is a passive event: a message reaches the root from a downstream node.

Receive notification that the structure has been closed

This is a passive event: all downstream nodes have abandoned the structure, there are no

more parties left to communicate with.

4.2.2 Injectable

An injectable is a piece of business logic that has been migrated to a negotiation partner’s
agent platform to act on behalf of the root. Exchanges messages with other injectables and
the root via the erected communication substructure. Also engages in local communication
with the site whose agent platform it visited. Use cases that require participation from an

injectable are shown in figure 4.5.

29

Send a message upstream / downstream / to the local site
After composing the contents, a message can be sent upstream / downstream / to the local

site without any other overhead.

Terminate conversation with the upstream nodes / the local site (patch up the

structure)

Once connection is totally lost to either all the upstream nodes or the local site, the
injectable must terminate itself, since it is nothing more than an intermediary between
upstream nodes and sites.

Terminate conversation with the downstream nodes

The conversation with the downstream nodes can be terminated without further adminis-
tration: the injectable is not obliged to close down, neither are the downstream nodes if
they have other live upstream nodes to communicate with.

Receive a message from upstream / from downstream / from the local site
This is a passive event: a message reaches the injectable from an upstream / downstream
node / the local site.

Receive notification that all upstream nodes / the local site terminated the

conversation

This is a passive event: the injectable must terminate itself, since there is no use for it. No
more communication between root and sites can commence any more, hence all affected
resources must be freed for reuse by other applications.

Receive notification that all downstream nodes terminated the conversation

This is a passive event: usually does not require any further administration.

4.2.3 Site

A site is a program that connects to the injectable and conducts a conversation with that
injectable on behalf of the other party (e.g. a local seller). A site communicates solely

with the injectable that arrived into its agent platform (see figure 4.6).

30

SEND
to deployable
a message

CLOSE
conversation

RECEIVE
from deployable
a message

Site

Figure 4.6: Use Cases Involving a Site

Send a message to the local deployable

After composing the contents, a message can be sent to the local deployable without any
other overhead.

Terminate conversation with the local deployable

Once connection is totally lost to the local deployable, the site must terminate itself, since
no more messages will be forthcoming.

Receive a message from the local deployable

This is a passive event: a message reaches the site from the local deployable.

Receive notification that the local deployable terminated the conversation

This is a passive event: the site must also terminate itself.

4.3 Architecture

Having surveyed the set of capabilities Cahoots must present to the various actors of busi-
ness logic, we now focus one level lower: how to actually implement those capabilities.
See figure 4.7 for a visual overview of the architecture. To reduce clutter, operation sig-
natures inherited from ancestor interfaces and classes have not been listed in descendants

again (even if implementation is redefined in a subclass). The following discussion explains

31

the package in detail, borrowing heavily from the design pattern terminology [GoF1994|
[Hol2000].

At the “passive” side, operation begins with the creation of a Receptor. This is a
listening proxy, a dormant hook waiting to be contacted. A Receptor is a low-resource
substitute for Sites, registered at well-known directory services. Once a Receptor is looked
up and contacted by a Deployer (with the intention of hooking it up into a structure),
it manufactures a Site on behalf of the entity that runs the Receptor (and the Site), it
receives a Deployable from the Deployer, and links the Site and the Deployable for local
communication. Having finished these preparations, the Deployer is then free to continue
its journey to the remaining Receptors it wishes to contact. The newly created Site
and Deployable engage in local negotiations, and the Receptor sleeps on until another
Deployable arrives to set up a separate dialogue. Note that both Deployable and Site
implement Administratable, which means that they can be registered (by the particular
Receptor that initiates their creation) in the local agent platform as individual agents,
subject to the agent management capabilities offered by that AP.

SiteFactory is a prime example of the ABSTRACT FACTORY design pattern (imple-
mented with a FACTORY METHOD). By substituting different factory objects at run-
time, different products may be created instead of hardwiring them into the framework
code. Receptor is a PROXY, of course. To accommodate each agent platform to the
Administratable interface, the Receptor needs ADAPTER objects to adapt Administratable
to the local agent platform’s interface.

At the “active” side, as seen from the root agent, a StructureFactory erects a structure
over a set of previously looked-up Receptors and using a given InjectableFactory to put
Injectables into each Receptor. The actual structure is made by a RelationsDeployer,
which visits each Receptor in turn, one after another, carrying a Relations subclass
along. It deploys an Injectable from the factory at each, accompanied by a Node to link
the Injectable to the rest of the structure through a single well-defined interface, inde-
pendent of the particular structure topology. The actual topology is determined by the
Relations subclass: every Node gets linked to those other Nodes that the Relations sub-
class determines for it. In this way, the separate Relations descendants ChainRelations,
HubRelations, BinaryTreeRelations, LinkedThroughBinaryTreeRelations are respec-
tive algorithms that shape the overall topology.

StructureFactory is a FACADE that completely hides the usage details of RelationsDeployer
and Relations subclasses, making them easier to use. RelationsDeployer is an inter-

32

(@115 :911s ‘2 |qeAo |daq :a |qeho |dap)sa 1] 1ed 12 1S 16 1+
101d223y :(A1019€481 IS (A 10198431 IS)9JUR }SU pMAU+

[1epremiojwesnsumoq | [1epremiojwesnsdn |

%00asovdid
(@115 :911s ‘3 |qeko |daq :@ |qeko |dap)sa 1] Jed 13 1S 168 I+
101d293y :(A1019e491 1S :A1010€43] IS)90U. ISU MAU+
y20qladdoysseln
[(ssep:ssepiuai|d)iole jueisu a2l S+ [(ssep:ssepiuai|d)iole juesu|a |ge12a fu |+]
(5115 9115 '@ |qeAo |daq @ [qEA0 |dop)58 11184 1915 168 It [10lenuURISUINS | [10}enuelsud|geIdalu| |
101d90ay :(A1019e481 IS (A 1010849] IS)90UR ISU MaU+ T T
120aINY ! i
(1aua s Ipunoqu | :d [qeko [dap)} 1U I+ 4
911S :()adue)Su pmau+ 2lls w_nmuom—:_ _ [[e1ge0aTuy :(Ga11s :umop ":dn)aoue jsu mau+]
(@115 @115 '@ |qeko |daq :@ [qeAo [dep)se | 1.1ed 18 1S 168 1+ A1010e4911S 1 01 Sy e ' A _ A10j0e43|qe)08(U| _
(1940 |dag :A 10108440 |dap) Woi} 811s s1ab » 55185715 1 ! S8 jedd
(K1019e491 IS :A10 19849 1 IS)¥2009 |du IS+ X
A10310e4911S :AI010R491 1S -| I [P
so0ga|dwis L V
T | a|qekojdaq <wou) se|qeios fur s 10b
v mmm - L _ i A
1
[(1240 1dag :K 10 3oedk0 jdop) 1 is 1n+] T3P 1eM 104UE5 11SUM0G 1 100SUE ILUMOp - 1 R .
_ 101de09y _ J9p Jew Jojues J1sdn :jiodsueidn - ! ! OETTTERr "
S9RON ()puadsns+ '
()25s0 |9+ ()a1en 1108+ '
(9 |gez | |e 119S :9bessau)aA 1899 I+ Bu 1431s :()aueN 196+ '
JaualsiTpunoquy| a|qeresisiuIwpy 1
1
1
1

189S :SIaUd1S | |#
195 :sad Id#

EERL:ENE]

m.u_nzom:mn(< JO 1IN0 8INjoniis sasoduod

()as0 |0+
(2 1qez 1 |e 11as :9bessau)puas+
(19s :anauaysad id *19s :ppysad id)abueyoxe+ (1aua s ITpunoqu | : 18uUa 1S 17U |) JaUa 1S ITpUNOqU [SAQUS J+|
(8 |gez | |e 1195 :abessau)an 1899 1+ (43U3 1S 17pUNOQU | : U 1S 17U 1) JBUS IS ITPUNOGU |PPE+
adid yodsuel| punoginQ
| [suonepdanH | [suoneeyureyo |

[suonejeysailAreurgybnoiypaxuii| [suonepyesiihre
1

[1es (3s1Ae v 's101dede i 1s MAety isad idumog jus 3s Ixa)dn+]
[suoneley |

(:suolje |2l :s101dadaJ "' :9pON 1004 ‘ :A 101084198 [U 1) I9A0 [dadsuo | e |9+

Suo 1Je |9 :Suo 11e [9J-

1s MAelly :s1o3dadal-

1s 1MAe 11y :sad Igumog Jud Is IXa -
A1019e49 |qe 198 [u | :A10}1oeH 199

19ho|dagsuoie|oy

()auop+
9 |qeko |dag :()aoue Isu mau+

19ho)daa

<Buisn $10109091 [[€ 01 SAO [dop

1Jodsue 11punog 10

: s 10 1da2a 1)aa 1L A 1eu 1igybno 1y pau 17186+
1Jodsueipunogino :(:A1019e4199 [U | :s101deda1)es i A teu ig1ab+

1Jodsue iipunoqin0 :(:A1010e4108 U $101d828 1)qnH 186+
1Jodsue .l punogino :(:AJ4019€4198 [u 1’ :s101d8231)u ley) 19h+

1K1019e4 193 [u

K1010431N)0N11S

<DBusn einjoniis sadeys

Interface and Class Hierarchy

Figure 4.7

33

esting mix of BUILDER (the same build process can yield different structures, depending
on the Relations used) and VISITOR (different Deployers could set up a structure dif-
ferently when they have arrived). RelationsDeployer is implemented using TEMPLATE
METHODs (primed with the InjectableFactory to fully determine its operation). It uses
a Relations subclass as a STRATEGY. These Strategies encapsulate the topology linkup
algorithms into separate objects, so simply plugging in another Strategy results in a differ-
ent topology. The finished structure (embodied by OutboundTransport interfaces towards
the root and injectables) is itself a MEDIATOR: a decoupling between multiple participators
in an interaction, avoiding the need for them to refer to each other directly.

All structures are built out of Nodes. Nodes manage their relationships: each Node
references its direct live upstream and downstream neighbors. This is done through com-
ponents called UpstreamForwarder and DownstreamForwarder, descended from a com-
mon ancestor AbstractPipe. These forwarders implement both QutboundTransport (for
Injectable-to-Node communication) and Pipe (for Node-to-Node communication). An
Injectable can only send a message, close the transport, subscribe for incoming messages
or cancel its subscription. Among Nodes (actually, Pipes, since that’s how they see each
other), only two atomic operations occur: message forwarding and relationship manage-
ment. A Node may request another to add some Pipes to its neighboring Pipe sets and
to remove some from the same set. For instance, a typical complex operation for a Node
is exit the structure but patching up around it to preserve message flow for all its direct
neighbors. This involves telling all upstream neighbor Pipes to add all the downstream
neighbor Pipes and remove the exiting upstream Pipe; and telling all downstream neighbor
Pipes to add all upstream neighbor Pipes and remove the exiting downstream Pipe.

The relationship between the Pipe concept and the forwarders is a BRIDGE. The for-
warders are implemented using TEMPLATE METHODs. An Injectable gets notified of
incoming messages via the OBSERVER pattern: it subscribes to the transport for notifi-
cation. Internally, the forwarders use ITERATORs to go through every neighboring node
in a given task (such as the patch-up mentioned above), independently of the concrete
data storage structures that holds those references. And finally, the distributed nature of
message passing along a single-rooted topology resembles a CHAIN OF RESPONSIBILITY:
propagating messages towards places of greater authority to handle the message and make

a decision whether to pass it further.

34

Chapter 5
Implementation

Once a stable design was reached, implementation proceeded with creating actual code

and testing it.

5.1 Tools Used

Due to its novelty and possible benefits, agent technology commands great research interest
worldwide. As a consequence, many ways are tried and many tools are applied to implement
agents. Different tools have different uses, and the tools actually chosen reflect the given
application goals at hand. Below I list the tools that I used, with a short description and
a justification for the choice. Of course, these do not mean that only the given tool is

capable of performing a certain capability, only that I used them successfully in this work.

5.1.1 Java

A prerequisite for code migration is that every node involved interpret all arriving exe-
cutable code in the exact same way. This could be most trivially achieved by using the
exact same hardware in all nodes. This is unrealistic, of course. Any hardware upgrade
would immediately have to extend to the whole network, a most unfeasible aspect.

A better way is making all nodes behave as if they were of the same hardware. By
defining an abstract virtual machine (VM), and providing conforming implementations on
all nodes, the individual hardware differences are suppressed, as far as the migrating code
is concerned. All code, programmed for the virtual machine, can then run unchanged on

any host that presents a VM.

35

The virtual machine idea is not particularly new, it was around even in the 1970s, just
think of “redcode”, a game that survives to this day. (Its VM runs so-called “warriors”,
little competing code fragments that attempt to destroy all the others. The challenge lies
in writing effective warriors, and contests are still held yearly.) Processor emulator software
also belongs under the VM umbrella.

In light of this background, the fact that mobile agents also utilize VMs hardly comes as
a surprise. All major agent platforms use interpreted languages. With scripting languages,
such as Tcl, the source code interpreter implements the VM (in a loose sense), and code
migration is simply done by putting the agent source code on the wire.

Java, on the other hand, uses a compact bytecode, easily and efficiently implemented
on most processors today. This is advantageous for performance reasons, but Java offers
more. It is a full-fledged high-level language. Contrary to popular belief, it is not a pioneer
of brand-new concepts, it is actually rather conservative. Compared to C++, most of
its positive aspects come from the omission of some “feature”. No goto statement, no
direct pointer arithmetics, no explicit memory management (that is taken care of by a
garbage collector, an old idea itself). No multiple inheritance is also a bonus (nevertheless,
objects can still be polymorphic using the interface construct). One feature is really
missing, though: the Java type system does not support parametrized types (also called
“generics” — C++ attempted that with its template construct, with dubious results).

The Java class libraries include Object Serialization and Remote Method Invocation.
These are the most important for mobile agents. Serialization writes the data state of
arbitrary object structures into a byte stream (and vice versa). Starting with an object,
all member variables and other objects reachable from that object are also recursively
serialized. The net result of a serialization is a snapshot of the transitive closure, captured
in a byte stream. RMI builds on this by downloading the necessary bytecode through
HTTP, and introducing them into the JVM that executes the code. In this fashion, code
and data migrate seamlessly.

Of course, Microsoft heeded Java’s success, and now they are working on a family
of languages, most prominent of which is C# (pronounced C-sharp), targeted to rival
Java. How successful C# will be is unpredictable, as only prebeta downloads are available
currently (the product is due to appear in Windows XP), but even so, the similarities
are striking. It also uses an interpreter (called .Net runtime, as opposed to the JVM),
and also preprocesses the source (to Intermediate Language, as opposed to bytecode).

With Microsoft’s market muscle in mind, it could exert a heavy influence on future agent

36

development.

5.1.2 Grasshopper

The German company IKV++ [IKV2001| has been developing this Java-based proprietary
agent platform for years. Most European agent research programs use Grasshopper as
the underlying platform [ACTS1999|. Grasshopper is both OMG MASIF and FIPA ’98-
compliant, thus usable by the existing installed base that uses those standards. Note,
though, that it does not yet support FIPA 2000.

Grasshopper provides agent management primitive operations, built on Java RMI. It
extends RMI by providing various default implementations of inter-platform (host-host)
message transports (RMI calls them “socket factories”), adding new capabilities with these
transports is a matter is plugging them right in. IKV-++ itself recommends such a trans-
port, called TATK-SSL: it allows network traffic to be embedded in SSL encryption, with
all of its security implications (confidentiality, mutual identification, nonrepudiation).

In addition to starting and stopping agents, moving and copying them from platform to
platform, Grasshopper defines several stages of life cycle that all agents follow, this provides
better control over agents. Within a host, it defines the concept of a place, which is simply a
labeled location that serves as a meeting place for agents that look up places by their name.
Each host runs an agency (the Grasshopper term for agent platform), and these can be
federated to form a region (much like the shared DF case in [FIPA00023|). A Grasshopper
region automatically publishes agent migration to all its agencies, thus any agent within
the region can be looked up simply by name, the platform figures out the physical address
automatically. This is usually needed for messaging between agents in separate agencies.
Although such message exchange goes against the agent philosophy somewhat (since we
use agents to cut network traffic in the first place), Grasshopper allows its use when deemed
necessary. Grasshopper is also capable of asynchronous communication (method call results
arrive back in the uncertain future), and sports a very coarse-grained multicast feature

(which Cahoots does not use).

5.1.3 FIPA-OS

A Java-based FIPA 2000-compliant agent platform originated by Canadian telecom giant
Nortel Networks [NN2001| and open-sourced in late 2000. It implements a growing set of
FIPA 2000 standards.

37

[recy Ic] to Site: hello -
[send Ic] to Inject; hello

| Send Lc || Close Lc |

Figure 5.1: Screenshot: Chat Site

[recy up] helloFromRoot -
[send dn] hellaFrom4
[send Ic] to Site: hello
[recy 1e] to Inject: hello

Send Up Send Dn Send Lc | Print Pipes

Close Up Close Dn Close Lc %

Figure 5.2: Screenshot: Chat Injectable

FIPA-OS is specifically geared to help build intelligent agents that possibly handle
more than one conversation. It automatically dispatches incoming messages to appro-
priate handler methods, according to the interaction protocols understood by the agent.
The messages are automatically parsed from serialized representations into object data
structures.

The agent platform provided by FIPA-OS provides the same basic management func-
tions as Grasshopper. As the FIPA standards specify, it offers separate AMS and DF
agents and an MTS for inter-platform communication. Agents also have the option to
become persistent by using one of the persistence solutions of FIPA-OS (state snapshots

by serialization or into a database).

5.2 Sample Applications

The following sample applications were used to debug and test Cahoots.

5.2.1 Chat

A fully interactive chat-like sample application to demonstrate how messages propagate
from one node to the others. Every actor (root, injectable, site) displays a message window

with its complete local history: message receptions and sends, and their origins and targets.

38

E;a BuyerR oot M= E3

[send dn] helloFromR oot -

| Send Dn || Close Dn |

Figure 5.3: Screenshot: Chat Root

& [=I 3|

toDeployable:-22.924947517 278053 Close

Figure 5.4: Screenshot: InferMarket Site

The sites (figure 5.1) communicate locally with the deployed injectables. The injectables
(figure 5.2) may send messages to all direct neighbors both upstream and downstream in
the structure, and receive from all of them, too. The root (figure 5.3), of course, can only
propagate to downstream neighbors.

When entered in the text field, any string may be sent. Past messages can be recalled

from the scrollable event log by double-clicking them.

5.2.2 InferMarket

A semi-interactive application that actually mimics distributed one-to-many price negoti-
ation.

For this simple application, price negotiation between injectables and sites consists of
exchanging numbers. Sites (figure 5.4) answer all offers with a number that differs by a
small random amount.

Injectables (figure 5.5) are basically active objects [Hol1999|, servicing requests serially
(by queuing incoming requests for further processing, an application of the COMMAND
design pattern). During the conversation, injectables maintain their individual copy of the
lower and upper limits and direct their offers according to those. Should the site suggest

prices too high (above the upper limit, twice in a row), the negotiation is judged pointless

[E5 InferM arkerBuyerlnject: 1407378 H=

toSite:-22.948079189938547 Close

Figure 5.5: Screenshot: InferMarket Injectable

39

Egi InferM ark etB uyerR oot [_ (O]
[gend dn] 40.01100.0

[recw dn] 39.997962151 2172447479273
[recw dn] 39.98616380907964 (1407378
[recy dn] 39.99307335117357 (7197127
[recy dn] 29.99307335117357 (7197127
[recw dn] 39.9844FTET0ETE0T 52090452
[recw dn] 39.9844F7ET0G7B075|2090452
[recw dn] 39.9831217774715]4845269
[recw dn] 39.9831217774715|4845269
[recy dn] 39.4761 285736567 44]1407378
[recy dn] 29.47164210695608(7 479272
[recw dn] 39.47292950904538|2000492

S

-

| Accept Dn || Close Dn |

Figure 5.6: Screenshot: InferMarket Root

and the injectable exits the structure. If the site replies with prices between the two limits,
the injectable continues the negotiation without any outside intervention, steering it toward
the lower limit. If the conversation reaches the lower bound, the site’s suggestion is reported
up (tagged with a unique identifier for this node), and the conversation continues. Any
better offers from the site are also sent up.

An inquiry from downstream is handled as follows: if its price offer is better than the
injectable’s lower price limit, we decrease the limit to that value. The offer is forwarded
up regardless of this adjustment.

An upstream reply may contain either new price limits or an acceptance for a concrete
injectable. In the former case, all nodes adjust their limits, pass the message downstream
and continue negotiation. In the latter case, the chosen injectable finalizes the deal with
the site through a two-way handshake. The other injectables simply abort their negotiation
and quit.

The root (figure 5.6), having deployed the injectables, starts the negotiation by spec-
ifying a lower and an upper price limit to the injectables. Then it just listens to the
incoming offers. The user has the option to choose an offer and accept it. The acceptance
is propagated to all downstream injectables. After the process is concluded, the structure
is dismantled.

This negotiation procedure is very rudimentary. Upstream go prices to be confirmed,
downstream go new price limits and acceptances. Not very intelligent at negotiating prices,

but sufficient for stress-testing Cahoots with actual network traffic.

40

Chapter 6
Evaluation

Testing of the framework was performed using the two sample applications referred to
above. The hardware used was 5 PCs, located in the EBizLab, each using a 10Mbps thin
Ethernet wire connected to a Cisco Catalyst 2900 XL switch. All machines were fully inside
the lab’s internal local network to avoid problems with NAT (IP masquerading, performed
by the lab’s gateway to the university backbone). The used local IP addresses were in
the 10.105.1.z subnet range, with x = 2,3,4,6,16. Operating systems on the machines
were Microsoft Windows NT 4.0 and Microsoft Windows 2000 Professional. The Java
environment was in all cases version 1.3.0 _02. During the testing runs, the injectables were
introduced into a heterogeneous setup of normal RMI (no platform support), Grasshopper,

and FIPA-OS agent platforms. The empirical results are summarized below.

6.1 Performance

The very first impression of the system was that the structure construction took a while.
Factors external to Cahoots could greatly influence user perception, though — lookup of
Receptors from nameservices, for instance, especially when the nameservice did not re-
spond normally and the client application timed out before going on to the next nameser-
vice. When these factors were suppressed, there was still an overhead. For the 5 machines,
deploying a structure usually took about 25 seconds. The structure topology did not mat-
ter, since deployment was done sequentially, visiting one machine after another, to preserve
full generality (the option to make any topology). Specialized setup strategies could, in
theory, parallelize the topology establishment somewhat, but only for special topologies.

Full generality demands that the deployer have references to all already-existing nodes at

41

Number of Nodes 1123]4]|5
Deployment Time (seconds) | 11 | 14 | 17 | 20 | 25

Table 6.1: Measured Deployment Times

all times, and no other deployment method guarantees this.

6.1.1 Reliability

The communication structures proved quite resistant to network errors. Structure parti-
tions that, on occasion, lost all upstream contact (be it from network errors or manual
termination, just to see what happens) dismantled themselves quickly and reliably, freeing
up used resources. The partition that included the root continued to function, it just col-
lected results from the nodes still available. This was a powerful demonstration of graceful

degradation.

6.1.2 Speed

As a consequence of the linear setup method, the structure construction overhead was a
direct linear function of the number of nodes to be visited, each additional node incurring
another 3 seconds (see table 6.1). Network errors could, of course, add to this best-case
value. For a very large number of participants, structure construction may be a very large
performance hit. Once constructed, the structure passed messages very rapidly. Java RMI
only sent class files when necessary (when the remote party did not have the necessary
code to execute a given method or make sense of a given data structure), this kept the
number of HT'TP connections at a minimum. Data flowed between network hosts with no

perceptible delay between departure and arrival.

6.1.3 Scalability

Once the structure was in place, the vast majority of the communication could be com-
menced locally, with network traffic kept at a moderate amount. Most of the time, binary
trees or linked-through binary trees were used (see figure 6.1).

An unoptimized, very naive negotiator program (InferMarket), using a linked-through
binary tree, handled over 99% of its total traffic locally. For a detailed statistical breakdown
of a sample 2-minute run, see table 6.2. Note that this table characterizes the InferMarket

sample application rather than Cahoots. Any thoughtfully written negotiator application

42

ip4§

%ipz

Figure 6.1: Logical Topology of a Typical Experiment

ip4 ip2 ipl6 ipb ip3
Bytes sent upstream 345933 | 289439 83139 76981 78003
Bytes sent downstream 2026 2026 3037 3037 3037
Bytes sent locally 5255511 | 4441809 | 5636624 | 5208335 | 5406874
Bytes received from upstream 2026 2026 3037 3037 3037
Bytes received from downstream 238123 | 238123 0 0 0
Bytes received locally 5254515 | 4378609 | 5634549 | 5206396 | 5404921
Messages sent upstream 337 282 81 75 76
Messages sent downstream 2 2 3 3 3
Messages sent locally 5159 4361 5534 5114 5309
Messages received from upstream 2 2 3 3 3
Messages received from downstream 232 232 0 0 0
Messages received locally 5158 4299 5532 5112 5307
Avg bytes/msg sent upstream 1026 1026 1026 1026 1026
Avg bytes/msg sent downstream 1013 1013 1012 1012 1012
Avg bytes/msg sent locally 1018 1018 1018 1018 1018
Avg bytes/msg received from upstream 1013 1013 1012 1012 1012
Avg bytes/msg received from downstream 1026 1026 0 0 0
Avg bytes/msg received locally 1018 1018 1018 1018 1018
Lifetime (milliseconds) 144568 | 144327 | 138179 | 134774 | 130949

Table 6.2: Statistical Breakdown of a Sample InferMarket Run

43

can easily cut down several more orders of magnitude on the network/local communication
ratio.

The distributed nature of the framework naturally encouraged writing distributed nego-
tiation algorithms, spreading the required computational power over many network nodes,
rather than concentrating them in the root. The root still had some more processing to
do than the rest, since it had to make the final decisions (possibly — preferably? — with
user assistance). Nodes closer to the root usually had to pass more messages than leaf
nodes, but in general, all nodes in a well-balanced structure should handle the same av-
erage amount of messages. The better the negotiator, the more likely this will in fact

happen.

6.2 Global Behavior

Using preestablished communication structures has several advantages and disadvantages.

The following paragraphs discuss the remaining design goals and additional considerations.

6.2.1 Interoperability

The platform-independent nature of Java enables any program written on top of it to run
unchanged on a wide range of hardware and operating systems. Agent platforms are no
exception, and as all of them supported RMI as the common denominator between network
hosts, adapting the incoming injectables and locally created sites to the particular agent
platforms was easy. One drawback of using RMI as the wire format is that it provides
no security features by default. As diverse as the Internet is, however, arbitrary agent
platforms cannot be expected to support, say, SSL encryption on their endpoints. (Since
a chain is just as strong as its weakest link, all participants would need to use a common
secure communication method to achieve safety.) A fallback has to be used instead, and
RMI is perfect for that fallback in the absence of further information.

Agent platforms that support some form of encryption could also publish this informa-
tion in the directory services where they register their receptors. Theoretically, an agent
could find an encryption supported by all the receptors, and erect a communication struc-
ture using that encryption on the wire. This is not currently supported by Cahoots, and

it’s far from clear if it should be.

44

6.2.2 Structure Distortion over Time

Structure distortion occurs when individual injectables, feeling that they can no longer
contribute usefully to the ongoing negotiation, decide to quit. In this case, they patch up
the structure around themselves, linking each upstream neighbor to all downstream neigh-
bors and linking each downstream neighbor to all upstream neighbors and dropping out
from the middle. A structure may also become disrupted when the network is partitioned,
and a subset of the nodes is severed from the partition that includes the root. This latter
possibility is, however, an exceptional event rather than the norm.

The chain and hub structures enjoy the advantage that they cannot become distorted
over time. For the chain, there is exactly one upstream and one downstream connection
going from each node, thus any number of patching up preserves this property. The hub
structure consists of only one level, hence no patching up ever occurs. In either topology,
partitioning may force a certain number of nodes to leave, but the structure is not deformed.

The binary tree and linked-through binary tree structures, however, show structure
distortions. Each leaving node adds 1 pipe to upstream nodes, and 0 pipes to downstream
nodes (these figures are 3 and 1 pipes for the linked-through tree). The net result is
that as the structure gets thinner, it starts to accumulate relatively more interconnections
among its nodes. This, of course, increases network traffic, but also increases reliability:
redundancy ensures that messages have a greater chance reaching their destinations on a
best-effort network.

If this link-accumulating behavior is undesired, the code for Nodes needs to be modified.
Other structures could guarantee a bounded number of direct neighbors for all participating
nodes. 2-3 trees are a simple example. This would occasionally incur the O(logn) cost of

rearranging the tree as nodes drop out, generating additional network traffic.

45

Chapter 7
Postmortem

Fast-forward to 2030. We live in the age of calm computing [WB1996]. Computers have
become an indispensable part of our lives, helping us in myriad small ways, performing
many tasks unobtrusively, not drawing attention to themselves other than necessary. In
fact, they have blended so seamlessly into the background that we become aware of them
only when something is amiss. Except for power outages and software crashes, they con-
stantly prefilter our mail and newsfeed, schedule new appointments and keep track of the
food in the fridge.

Today, people purchase food in one of three types of stores: convenience stores, grocery
stores and supermarkets. These stores balance the need to get a wide variety of food
products against the need to get them in as short a time as possible. Basic items are
bought quickly in a convenience store; the weekend purchases can take an hour or two and
result in a trunkful of goods in the back of the family car.

How can computing help Cherie, our average user, with this activity? She wants food in
her home, and she has a limited amount of time. Simply tracking down every needed item
at the cheapest place to buy it is not really helpful. Going home on a weekday evening, she
will most likely have time to stop at one or two shops; picking up the bread, ham, milk,
eggs and ice cream at different stores is clearly out of the question for her. She needs help
in choosing those shops she does have time for. Appropriate agents can do this also, no
problem.

Cherie has other options, too. This being the 21st century, she might own cheap and
fast network connectivity, letting her contact the stores not only for a few moments, but
also for a prolonged time interval. She might even deploy her agents for days or weeks on

end, constantly looking for discounts and price reductions, and taking advantage of them.

46

As long as being online costs less than the money she saves on the food prices plus the
time she picks up her new possessions, she opts for constant net search.

So does everybody else. Once the technology becomes cheap enough, people swarm the
net looking for ways to save money. The only reason they didn’t browse every shop before
they made a purchase is that it took too long, and it was too much of an effort. When
technology helps them overcome that hurdle, they use it. This means an enormous amount
of traffic for future networks to handle.

The shops also have an incentive to be accessible online. By reducing their prices a bit,
they attract lots of customers. Of course, the other stores react to this by lowering their
prices too, a very fast response. The net result: uniform prices, ensured by a dynamic
equilibrium.

Is this setup feasible? At the extreme, a city may have millions of citizens and thousands
of shops. Unless all stores house gigantic supercomputers to serve the millions of agents
each of them receives, some form of access control is necessary, especially when the agents
are sophisticated and perform quite a bit of thinking on their own, taking processor time.
In this case, agent deployment could take a long time, maybe an hour. On the other
hand, long-running agents do not have to be deployed often, so the long setup time could
be acceptable. Events (such as price change notifications), however, could wake up every
agent. The havoc of a million agents all clamoring for CPU time could only be handled by
massive load balancing, compartmentalization, and other techniques.

Of course, most cities are not nearly this big. An average settlement in an average
country amounts to several thousand people, resulting in much lighter loads. Even today’s
technology could serve a village or suburb. With 21st century technology. ..

Recognizing an opportunity, postal services experience a revival. Having lost a sizable
portion of the messaging market to the Internet, they turn to small parcel delivery. They
offer Cherie the possibility to receive, along with her morning newspaper, all the groceries
she had bought at various stores. Cherie accepts gladly, because most of her purchases
didn’t really require her physical presence anyway. One box of ice cream is the same as
another, she would just like to have one, any one. And, once a critical mass of market
penetration is reached, this can be done profitably, because the marginal cost of carrying
yet another customer’s parcel is negligible compared to the cost of having a delivery truck
at all. Cherie still goes to her favorite wine merchant to hand-pick that vintage Chateau
Lafite, but she never again wastes time to buy bread and soap.

This vision led me to create Cahoots.

47

Chapter 8
Glossary

Abstract factory Creational design pattern: Provide an interface for creating families
of dependent objects without specifying their concrete classes. (compare Factory
method)

Adapter Structural design pattern: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn’t otherwise because of

incompatible interfaces.

Agent A computational process that implements the autonomous, communicating func-

tionality of an application.

Agent attributes A set of properties associated with an agent by inclusion in its directory

entry.

Agent communication language A language with a precisely defined syntax, semantics
and pragmatics, which is the basis of communication between independently designed

and developed agents. Communicative acts can be expressed in the ACL.

Agent management system The white pages service in an agent platform: manages the
agents resident on that platform, enabling their copying, migration, and termination

through outside intervention. (compare Directory facilitator, Yellow pages service)
Agent name An opaque, non-forgeable token that uniquely identifies an agent.

Agent platform A conceptual node in the agent universe. Inter-platform communication
is done through a message transport service, while agents within the same platform

may communicate directly.

48

Bridge Structural design pattern: Decouple an abstraction from its implementation so

that the two can vary independently.

Builder Creational design pattern: Separate the construction of a complex object from
its representation so that the same construction process can create different repre-

sentations.

Chain of responsibility Behavioral design pattern: Avoid coupling the sender of a re-
quest to its receiver by giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the chain until an object
handles it.

Command Behavioral design pattern: Encapsulate a request as an object, thereby letting
you parameterize clients with different requests, queue or log requests, and support

undoable operations.

Communicative act A special class of actions that correspond to the basic building
blocks of dialogue between agents. A communicative act (also called “speech act”)
has a well-defined, declarative meaning independent of the content of any given act.

(see also Speech act theory)

Content Content is that part of a communicative act that represents the domain-dependent

component of the communication.

Content language A language used to express the content of a communication between

agents.

Design pattern A description of communicating objects and classes that are customized
to solve a general design problem in a particular situation. There are three kinds of
design patterns: creational (see Abstract factory, Builder, Factory method), structural
(see Adapter, Bridge, Facade, Prozy), and behavioral (see Chain of responsibility,
Command, Iterator, Mediator, Observer, State, Strategy, Template method, Visitor).

Directory entry A composite entry containing the agent name, locator, and agent at-

tributes of an agent.

Directory facilitator The yellow pages service in an agent platform: enables semantic

registration and lookup of running agents. Entries may carry additional relevant

49

information about the agents, such as the problem domain they work in, the in-
teraction protocols they support, the auxiliary software components they require to

successfully run. (compare Agent management system, White pages service)

Directory service A service providing a shared information repository in which directory

entries may be stored and queried.

Encoding representation A way of representing an abstract syntax in a particular con-
crete syntax. Examples of possible representations are XML, FIPA strings, and

serialized Java objects.

Envelope That part of a transport message containing information about how to send
the message to the intended recipient(s). May also include additional information

about the message encoding, encryption, and other quality parameters.

Facade Structural design pattern: Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes the subsystem easier

to use.

Factory method Creational design pattern: Define an interface for creating an object,
but let subclasses decide which class to instantiate. Factory Method lets a class defer

instantiation to subclasses. (compare Abstract factory)

Interaction protocol A conceptual skeleton for message exchange between multiple agents.
Describes the causal sequence of message transfers to achieve a particular information-

exchanging transaction.

Iterator Behavioral design pattern: Provide a way to access the elements of an aggregate

object sequentially without exposing its underlying representation.
Locator A set of transport descriptions used to communicate with an agent.

Mediator Behavioral design pattern: Define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by keeping objects from referring

to each other explicitly, and it lets you vary their interaction independently.

Message A unit of communication between two agents. A message is expressed in an

agent communication language, and encoded in an encoding representation.

20

Message transport service A service that supports the sending and receiving of trans-

port messages between agents residing on separate agent platforms.

Middleware Housekeeping system component that interfaces two or more other compo-
nents. Does not have a clear-cut independent function of its own, it always acts
in conjunction with other components, but performs auxiliary “plumbing” to help
the business logic’s functioning. Messaging services, database drivers, persistence

services are all examples of middleware.

Mobile agent An agent that may migrate between different agent platforms over the

course of its lifetime. (oppose Stationary agent)

Nomadic application An application executing on a mobile device and communicating
with other application components over intermittent links. Establishing links on

demand and adapting to various link qualities are the prime characteristics.

Obligation A constraint over an agent’s future behavior: the agent may be expected to
send report updates every five minutes, or spend no more than half a minute at any
one agent platform. Failure to do so can only be detected in hindsight, and offenders

are therefore harder to contain and punish. (compare Permission)

Observer Behavioral design pattern: Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are notified and updated

automatically.

Ontology A set of symbols together with an associated interpretation that may be shared
by a community of agents or software. An ontology includes a vocabulary of symbols
referring to objects in the subject domain, as well as symbols referring to relationships

that may be evident in the domain.
Payload A message encoded in a manner suitable for inclusion in a transport message.

Permission A constraint over agent behavior: before committing certain sensitive oper-
ations, an agent must have permission for that operation. In the absence of that

permission, the operation cannot be carried out. (compare Obligation)

Policy A uniform set of permissions and obligations that all agents belonging to a given

domain must obey.

o1

Policy domain The set of agents that obey a common policy of security restrictions.

(compare Problem domain)

Problem domain The particular field of expertise in which a concrete software system

is helping human activities. (compare Policy domain)

Proxy Structural design pattern: Provide a surrogate or placeholder for another object
to control access to it.

Remote procedure call A request-response protocol that calls a procedure on a given
network host with some input parameters, and returns the result to the calling host.

(compare Remote method invocation)

Remote method invocation The object-oriented version of RPC: a request-response
protocol for method invocation, but the input and output parameters may contain
objects that migrate both their data state and their code. (compare Remote procedure

call, see also Serialization)

Resolver An agent that may be able to return a live transport address to another agent,

used when all addresses given previously fail.

Serialization The process of transforming an abstract data structure (such as a tree or
a list) or a structure of objects into a bit-stream representation. The data structure
can later be fully recovered (deserialized) from the stream. (see also Remote method

invocation)

Service A service provided for agents and other services. A service is defined in terms of

the operations that it supports.

Speech act theory A theory derived from the linguistic analysis of human communica-
tion. It is based on the idea that with language the speaker not only makes state-
ments, but also performs actions. Speech acts can be put into the performative form,
so called because saying the act makes it so (performs the act). “I hereby cancel the
meeting we had scheduled for 3 PM” is a speech act: saying it cancels the meeting.
“I hereby water the plants” is not: saying it does not water the plants. (see also

Communicative act)

State Behavioral design pattern: Allow an object to alter its behavior when its internal

state changes. The object will appear to change its class.

52

Stationary agent An agent that stays on the same agent platform throughout its full
lifetime. (oppose Mobile agent)

Strategy Behavioral design pattern: Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

Template method Behavioral design pattern: Define the skeleton of an algorithm in
an operation, deferring some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the algorithm’s structure.

Transport A transport is a particular data delivery service supported by a given message

transport service.

Transport description The address of a particular agent or service within the address

space accessible by a given transport.

Transport message The object conveyed from agent to agent. It contains the transport
description for the sender and receiver or receivers, together with a payload containing

the message.

Visitor Behavioral design pattern: Represent an operation to be performed on the ele-
ments of an object structure. Visitor lets you define a new operation without changing

the classes of the elements on which it operates.

White pages service A service listing the current status of agents running on an agent

platform, enabling their management through primitive operations.

Yellow pages service A service carrying thematically categorized, semantically rich in-

formation about agents and their whereabouts.

93

Chapter 9
List of Acronyms

ACC Agent Communication Channel

ACL Agent Communication Language

AMS Agent Management System

ANSI American National Standards Institute

AP Agent Platform

APIT Application Programming Interface

ARB Agent Resource Broker

AUML Agent UML

ATM Asynchronous Transfer Mode

CA Communicative Act, or Control Agent (context-dependent)
CCL Constraint Content Language

CORBA Common Object Request Broker Architecture
CPU Central Processor Unit

DF Directory Facilitator

FIPA Foundation for Intelligent Physical Agents

o4

GoF Gang of Four

HAP Home Agent Platform

HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
ITIOP Internet Inter-Orb Protocol

IP Interaction Protocol, or Internet Protocol (context-dependent)
JVM Java Virtual Machine

KIF Knowledge Interchange Format
LAN Local Area Network

MA Monitoring Agent

MAF Mobile Agent Facility

MASIF Mobile Agent System Interoperability Facility
MTS Message Transport Service

NAT Network Address Translation

OA Ontology Agent

OO Object Orientation, Object Oriented
OOD Object Oriented Design

OOP Object Oriented Programming
RDF Resource Description Framework
RPC Remote Procedure Call

RMI Remote Method Invocation

SA Speech Act

SL Semantic Language

95

SSL Secure Sockets Layer

Tcl Tool Command Language

TCP/IP Transmission Control Protocol / Internet Protocol
UML Unified Modeling Language

VM Virtual Machine

WAP Wireless Application Protocol

XML Extensible Markup Language

o6

Bibliography

[ACTS1999]

[BB1997]

[FIPA00001]

[FIPA00007]

|[FTPA0O000S|

[FIPA00009]

[FTPA00010]

[FIPA00011]

[FIPA00014]

|[FTPA00023|

ACTS (Advanced Communications Technologies and Services) Project In-
foWin: Agents Technology in Europe: ACTS Activities, 1999. http://www.

infowin.org/

Bigus, Joseph P. and Bigus, Jennifer: Constructing Intelligent Agents with
Java: A Programmer’s Guide to Smarter Applications. John Wiley & Sons,
Inc., 1998.

Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Spec-
ification, 2000. http://www.fipa.org/specs/fipa00001/

Foundation for Intelligent Physical Agents: FIPA Content Languages Speci-
fication, 2000. http://www.fipa.org/specs/fipa00007/

Foundation for Intelligent Physical Agents: FIPA SL Content Language Spec-
ification, 2000. http://www.fipa.org/specs/fipa00008/

Foundation for Intelligent Physical Agents: FIPA CCL Content Language
Specification, 2000. http://www.fipa.org/specs/fipa00009/

Foundation for Intelligent Physical Agents: FIPA KIF Content Language
Specification, 2000. http://www.fipa.org/specs/fipa00010/

Foundation for Intelligent Physical Agents: FIPA RDF Content Language
Specification, 2000. http://www.fipa.org/specs/fipa00011/

Foundation for Intelligent Physical Agents: FIPA Nomadic Application Sup-
port Specification, 2000. http://www.fipa.org/specs/fipa00014/

Foundation for Intelligent Physical Agents: FIPA Agent Management Speci-
fication, 2000. http://wwuw.fipa.org/specs/fipa00023/

o7

[FIPA00025] Foundation for Intelligent Physical Agents: FIPA Interaction Protocol Li-
brary Specification, 2000. http://www.fipa.org/specs/fipa00025/

|[FIPA00026] Foundation for Intelligent Physical Agents: FIPA Request Interaction Proto-
col Specification, 2000. http://www.fipa.org/specs/fipa00026/

|[FIPA00027] Foundation for Intelligent Physical Agents: FIPA Query Interaction Protocol
Specification, 2000. http://wuw.fipa.org/specs/fipa00027/

|[FIPA00028] Foundation for Intelligent Physical Agents: FIPA Request When Interaction
Protocol Specification, 2000. http://www.fipa.org/specs/fipa00028/

[FTPA00029] Foundation for Intelligent Physical Agents: FIPA Contract Net Interaction
Protocol Specification, 2000. http://www.fipa.org/specs/fipa00029/

|[FIPA00030] Foundation for Intelligent Physical Agents: FIPA Iterated Contract Net
Interaction Protocol Specification, 2000. http://www.fipa.org/specs/
£ipa00030/

[FIPA00031] Foundation for Intelligent Physical Agents: FIPA English Auction Interaction
Protocol Specification, 2000. http://www.fipa.org/specs/fipa00031/

|FIPA00032| Foundation for Intelligent Physical Agents: FIPA Dutch Auction Interaction
Protocol Specification, 2000. http://www.fipa.org/specs/fipa00032/

[FIPA00033] Foundation for Intelligent Physical Agents: FIPA Brokering Interaction Pro-
tocol Specification, 2000. http://www.fipa.org/specs/fipa00033/

|[FIPA00034] Foundation for Intelligent Physical Agents: FIPA Recruiting Interaction Pro-
tocol Specification, 2000. http://www.fipa.org/specs/fipa00034/

|[FIPA00035] Foundation for Intelligent Physical Agents: FIPA Subscribe Interaction Pro-
tocol Specification, 2000. http://www.fipa.org/specs/fipa00035/

|[FIPA00036] Foundation for Intelligent Physical Agents: FIPA Propose Interaction Pro-
tocol Specification, 2000. http://www.fipa.org/specs/fipa00036/

[FTPA00037] Foundation for Intelligent Physical Agents: FIPA Communicative Act Li-
brary Specification, 2000. http://www.fipa.org/specs/fipa00037/

o8

[FIPA00061]

[FIPA00067]

|[FTPA00069]

[FIPA00070]

[FIPA00071]

[FIPA00075]

[FIPA00OT76]

[FIPA00079]

[FTPA00080]

[FIPA000S1]

[FIPA00082]

|[FTPA0O0083|

Foundation for Intelligent Physical Agents: FIPA ACL Message Structure
Specification, 2000. http://www.fipa.org/specs/fipa00061/

Foundation for Intelligent Physical Agents: FIPA Agent Message Transport
Service Specification, 2000. http://www.fipa.org/specs/fipa00067/

Foundation for Intelligent Physical Agents: FIPA ACL Message Represen-
tation in Bit-Efficient Encoding Specification, 2000. http://www.fipa.org/
specs/fipa00069/

Foundation for Intelligent Physical Agents: FIPA ACL Message Rep-
resentation in String Specification, 2000. http://www.fipa.org/specs/
£ipa00070/

Foundation for Intelligent Physical Agents: FIPA ACL Message Representa-
tion in XML Specification, 2000. http://www.fipa.org/specs/fipa00071/

Foundation for Intelligent Physical Agents: FIPA Agent Message Trans-
port Protocol for IIOP Specification, 2000. http://www.fipa.org/specs/
£ipa00075/

Foundation for Intelligent Physical Agents: FIPA Agent Message Trans-
port Protocol for WAP Specification, 2000. http://www.fipa.org/specs/
£ipa00076/

Foundation for Intelligent Physical Agents: FIPA Agent Software Integration
Specification, 2000. http://www.fipa.org/specs/fipa00079/

Foundation for Intelligent Physical Agents: FIPA Personal Travel Assistance
Specification, 2000. http://www.fipa.org/specs/fipa00080/

Foundation for Intelligent Physical Agents: FIPA Audio-Visual Entertain-
ment and Broadcasting Specification, 2000. http://www.fipa.org/specs/
£ipa00081/

Foundation for Intelligent Physical Agents: FIPA Network Management and
Provisioning Specification, 2000. http://www.fipa.org/specs/fipa00082/

Foundation for Intelligent Physical Agents: FIPA Personal Assistant Speci-
fication, 2000. http://www.fipa.org/specs/fipa00083/

99

[FIPA00084]

[FIPA00085]

|FTPA0O0086]

[FIPA00087]

[FIPA00088]

|[FTPA0O0089|

[GoF1994]

[Hol1999)]

Foundation for Intelligent Physical Agents: FIPA Agent Message Trans-
port Protocol for HTTP Specification, 2000. http://www.fipa.org/specs/
£ipa00084/

Foundation for Intelligent Physical Agents: FIPA Agent Message Trans-
port Envelope Representation in XML Specification, 2000. http://www.fipa.
org/specs/fipa00085/

Foundation for Intelligent Physical Agents: FIPA Ontology Service Specifi-
cation, 2000. http://www.fipa.org/specs/fipa00086/

Foundation for Intelligent Physical Agents: FIPA Agent Management
Support for Mobility Specification, 2000. http://www.fipa.org/specs/
£ipa00087/

Foundation for Intelligent Physical Agents: FIPA Agent Message Transport
Envelope Representation in Bit-Efficient Encoding Specification, 2000. http:
//www.fipa.org/specs/fipa00088/

Foundation for Intelligent Physical Agents: FIPA Domains and Policies Spec-
ification, 2000. http://www.fipa.org/specs/fipa00089/

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

Holub, Allen I.: Programming Java Threads in the Real World, Parts 1-9.
JavaWorld, 1999.

http://www. javaworld.com/jw-09-1998/jw-09-threads_p.html,
http://www. javaworld.com/jw-10-1998/jw-10-toolbox_p.html,
http://www. javaworld.com/jw-11-1998/jw-11-toolbox_p.html,
http://www. javaworld.com/jw-12-1998/jw-12-toolbox_p.html,
http://www. javaworld.com/jw-02-1999/jw-02-toolbox_p.html,
http://www.javaworld.com/jw-03-1999/jw-03-toolbox_p.html,
http://www.javaworld.com/jw-04-1999/jw-04-toolbox_p.html,
http://www. javaworld.com/jw-05-1999/jw-05-toolbox_p.html,
http://www. javaworld.com/jw-06-1999/jw-06-toolbox_p.html.

60

[Hol2000]

[IKV2001]

[NN2001]

[OMG2000]

[W3C1998]

[WB1996]

Holub, Allen I.: Building User Interfaces for Object-Oriented Systems, Parts
1-6. JavaWorld, 2000.

http://www. javaworld.com/jw-07-1999/jw-07-toolbox_p.html,
http://www. javaworld.com/jw-09-1999/jw-09-toolbox_p.html,
http://www. javaworld.com/jw-10-1999/jw-10-toolbox_p.html,
http://www. javaworld.com/jw-12-1999/jw-12-toolbox_p.html,
http://www. javaworld.com/jw-01-2000/jw-01-toolbox_p.html,
http://www. javaworld.com/jw-03-2000/jw-03-toolbox_p.html.

IKV++: Grasshopper homepage, 2001. http://www.grasshopper.de/

Nortel Networks: FIPA-OS homepage, 2001. http://fipa-os.

sourceforge.net/

Object Management Group: Mobile Agent Facility Specification, 2000.
http://cgi.omg.org/cgi-bin/doc?formal/00-01-02.pdf,
http://cgi.omg.org/cgi-bin/doc?formal/00-06-40.txt

World Wide Web Consortium: Eztensible Markup Language (XML) 1.0 Spec-
ification, 1998. http://www.w3.org/TR/REC-xml

Weiser, Mark and Brown, John Seely: Designing Calm Computing, 1996.
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm

61

