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ABSTRACT
We study the robustness of SIMBIoTA-ML, a recently proposed
machine learning-based IoT malware detection solution against ad-
versarial samples. First, we propose two adversarial sample creation
strategies that modify existing malware binaries by appending ex-
tra bytes to them such that those extra bytes are never executed,
but they make the modified samples dissimilar to the original ones.
We show that SIMBIoTA-ML is robust against the first strategy,
but it can be misled by the second one. To overcome this problem,
we propose to use adversarial training, i.e., to extend the training
set of SIMBIoTA-ML with samples that are crafted by using the
adversarial evasion strategies. We measure the detection accuracy
of SIMBIoTA-ML trained on such an extended training set and show
that it remains high both for the original malware samples and for
the adversarial samples.
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• Security and privacy→Malware and its mitigation; • Com-
puting methodologies→Machine learning.
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1 INTRODUCTION
The Internet-of-Things (IoT) consists of embedded computers con-
nected to the Internet. In the recent past, there has been a dramatic
increase in the number of deployed embedded IoT devices, and ex-
citing new IoT applications emerged in various domains, including
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manufacturing, transportation, healthcare, and agriculture. Unfor-
tunately, with the proliferation of IoT devices, the number of known
attacks against them has also increased. These attacks include in-
fection by malware. The best-known example for this is probably
Mirai [3], a malware that infected hundreds of thousands of IoT de-
vices and launched one of the largest distributed denial-of-service
attacks against Internet-based services in 2016. Since then, the IoT
threat landscape has been extended with other malware families as
well, such as Gafgyt, Tsunami, and Dnsamp [6].

Malware detection is an essential part of modern defense mech-
anisms used in computer-based systems. Unfortunately, no matter
how good a malware detection system is, attackers constantly work
on methods to evade it. In particular, they want to construct mal-
ware samples that have the same function as older samples, but not
recognized by detectors. Such kind of samples are called adversarial
examples. The degree of resistance against adversarial examples
defines the robustness of the malware detection system. History
shows that traditional signature-based and heuristic malware de-
tection are not robust against adversarial samples, which explains
the large number of polymorphic malware. And it has been shown
in the literature [4, 16] that, unfortunately, machine learning-based
(ML-based) malware detectors can also be misled easily.

In this paper, we examine the robustness of SIMBIoTA-ML, which
is a recentML-based IoTmalware detection solution [13].We design
two adversarial example creation strategies that modify existing
malware samples by appending extra bytes to them such that those
bytes are never executed but they make the modified samples dis-
similar to the original ones. The first strategy adds chunks of the
original sample to the malware and ensures that a certain target
difference is achieved by doing so. The second strategy embeds a
malware into a known benign file and ensures that the resulting
sample becomes similar to the benign file (and hence dissimilar to
the original malware sample). We show that SIMBIoTA-ML is robust
against the first strategy, but it can be misled by the second one. To
overcome this problem, we propose to use adversarial training as
the main contribution of this paper. Adversarial training has been
used in the image recognition domain to increase the robustness
of ML-based models against adversarial examples. We adopt this
approach in the domain of malware detection and demonstrate its
effectiveness. Adversarial training in our case means that the train-
ing set of the malware detector algorithm is extended with samples
that are crafted by using the adversarial evasion strategies that we
proposed. We measure the detection accuracy of SIMBIoTA-ML
trained on such an extended training set and show that it remains
high both for the original malware samples and for the adversarial
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samples. The price that we have to pay for this robustness is the in-
creased training time and the increased size of the detection model,
however, we argue that both are bearable in practice.

This paper is organized as follows. In Section 2, we take a closer
look at the design and performance of SIMBIoTA-ML. Section 3
presents in detail the strategies for creating adversarial examples.
In Section 4, we present our proposed countermeasure, i.e., adver-
sarial training, and the measurement results showing that it makes
SIMBIoTA-ML robust against evasion by adversarial samples. In Sec-
tion 5, we show the current state-of-the-art in this specific scientific
field. Finally, Section 6 concludes the paper.

2 SIMBIOTA-ML
Although, IoT malware detection is a challenging problem, there
have been solutions proposed in the literature, like [17]. In this work,
we are interested in SIMBIoTA-ML (SIMilarity Based IoT Antivirus
with Machine Learning) [13], an IoT malware detection method
that has been proposed recently, and that achieved a remarkable
malware detection performance, while remaining resource efficient
at the same time. Before presenting the operation of this solution,
it is useful to review the concept of similarity hashes, as it forms
the basis of SIMBIoTA-ML.

2.1 The TLSH similarity hash function
Cryptographic hash functions, such as SHA256, produce completely
different hash values even for similar inputs. This makes them suit-
able for many security applications. Similarity hash functions are,
however, different: they output similar hash values for similar in-
puts. SIMBIoTA-ML uses the TLSH similarity hash function [12]
for extracting features from executable files (so called binaries).
Indeed, the TLSH hash of a binary can be computed very efficiently
and in a completely automated way. The hash calculation time is
in the range of milliseconds on contemporary personal comput-
ers, which means that it should be lightweight enough even for
resource constrained IoT devices. The TLSH hash value is also rel-
atively short, it can be represented in 36 bytes, which is another
advantage. Moreover, one can measure the similarity of two bina-
ries by computing their TLSH difference score, an integer reflecting
the dissimilarity of the inputs. The minimum TLSH difference score
is 0, which means that the two inputs are almost identical, while a
higher difference score means that the inputs are more dissimilar.
For more details on the calculation of the TLSH hash value and the
TLSH difference score, we refer the reader to [12]. It is important to
note that similarity hash functions and difference score calculation
algorithms operate only on raw byte sequences as inputs, therefore,
they are suitable for capturing static byte level similarity of binaries
and nothing more.

2.2 Operation of SIMBIoTA-ML
SIMBIoTA-ML is an IoT malware detection solution that was pro-
posed in [13]. It saves storage, memory, computation, and band-
width, which resources are constrained in the IoT field. According
to the architectural view in Figure 1, SIMBIoTA-ML consists of
3 major components: IoT device (i.e. client), backend (i.e. server),
and intelligence network. The intelligence network (e.g. honeypot
farms, commercial malware feeds, and public malware/software

Figure 1: Architecture of SIMBIoTA-ML

repositories) provides malware and benign samples for the backend.
Typically, thousands of samples are collected each day. The backend
trains a random forest classifier (i.e. model) using the feature vec-
tors extracted from the malware and benign samples. The feature
vectors are derived from the TLSH hash of the binaries. The training
of a machine learning model could be a resource intensive task,
therefore, only the fully trained model is sent to the IoT devices. If
the model on the server side is updated, then the clients download
the update from the server. The clients use the stored machine
learning model to decide locally about any new file if it is malicious
or benign. With this solution, SIMBIoTA-ML has a true positive
malware detection rate of ca. 95%, while having low false positive
detection rate at the same time. Furthermore, SIMBIoTA-ML has
the advantage with respect to other cloud-based malware detection
systems that the clients can operate using their local model even if
the backend is unavailable.

3 STRATEGIES FOR CREATING
ADVERSARIAL EXAMPLES

SIMBIoTA-ML effectively recognizes malicious files using an ML
model trained on TLSH hash values of malware and benign bina-
ries. But what if the attacker knows that SIMBIoTA-ML uses this
technique? Could the attacker use this information to increase the
chances of evading detection of his malware? In this section we are
looking for answers to these questions.

In general, adversarial examples are those inputs that were specif-
ically crafted to be misclassified by a given ML model [5]. In our
case, this means the misclassification of malicious samples as be-
nign files. To answer the questions asked at the beginning of the
section, we have to think with the head of the attacker. First, we
assume that we already have a fancy malware and we do not want
to spoil its functionality and executability. The only problem is that
SIMBIoTA-ML indicates correctly that it is malicious. However, we
know that the similarity hash generation algorithms (which are
also used by our detection systems) do not take into account the
format of the inputs, they only consider raw sequences of bytes.
Furthermore, we can even find out that this similarity hash function
is the TLSH.

Our idea is that we can mislead the detection system if we could
manipulate the TLSH hash value of our malware. Knowing the
nature of TLSH, in order to do so, we have to modify the raw binary.
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Targeted modification of the binary by manipulating the source
code without spoiling the original functionality is not so trivial
task. It would be much easier to add a few extra bytes to the end
of the binary that actually will never be executed, but will change
the TLSH hash value. However, we have to do this expansion of
the binary carefully, because too much growth can be noticeable
for the defenses system. For creating such adversarial examples,
we developed two strategies. The first one is called Chunker, the
second is called Disguiser. These represent two different approaches.
In case of Chunker, we add to the malware chunks of itself and
the goal is to increase the TLSH difference between the malware
and the crafted adversarial example. In case of Disguiser, we want
to hide our malware in a benign file, so the goal is to decrease
the TLSH difference between the benign file and the adversarial
example. Moreover, these strategies are simple enough to be easily
implemented by an attacker in a real-world situation.

3.1 Strategy 1: Chunker
As stated in [19], an extensive empirical analysis showed that the
TLSH difference score 40 is a good malware detection threshold.
So, our intuition is that if the TLSH difference between the original
malware and our crafted adversarial example is larger than 40, then
SIMBIoTA-ML will likely misclassify it. Chunker’s main idea is to
simply add bytes to the end of the malware binary. The question is,
how many and what kind of bytes need to be added to reach our
goal. If all attached bytes are constant or random, the byte entropy
would change and a static analyzer would easily detect it. It seems a
reasonable solution to add some chunks from the original malware
to itself. With this solution, if we choose properly the chunks, the
byte entropy of the modified file will be almost the same as the
original. The pseudocode of Chunker is presented as Algorithm 1.

Algorithm 1 𝐶ℎ𝑢𝑛𝑘𝑒𝑟
Input: malware binary𝑀𝑊
Output: adversarial example𝐴𝐷𝑉𝐸𝑋
1: 𝐶𝐻𝑈𝑁𝐾𝑆 ← split𝑀𝑊 to 20 equal parts
2: 𝐶𝐻 ← element form𝐶𝐻𝑈𝑁𝐾𝑆 w/ the closest entropy to𝑀𝑊
3: 𝐴𝐷𝑉𝐸𝑋 ← 𝑀𝑊

4: repeat
5: 𝐴𝐷𝑉𝐸𝑋 ← 𝐴𝐷𝑉𝐸𝑋 +𝐶𝐻
6: until TLSH_difference (𝑀𝑊,𝐴𝐷𝑉𝐸𝑋 ) > 40
7: return𝐴𝐷𝑉𝐸𝑋

We performed an empirical study to find out how many chunks
need to be added to reach TLSH difference greater than 40. This
showed that, in most cases, 4 chunks are enough, which results in
only 20% growth in file size.

3.2 Strategy 2: Disguiser
We could also mislead the detection system, if we hide a malware
inside of a benign file. So the Disguiser strategy concatenates a
benign file to the end of a malware binary. Hence, when this file
is executed, the malware will run, although the TLSH hash of the
file may be determined by the added benign content. Here, our
intuition is that a small malware in a large benign file can be hidden
easier, because the TLSH difference between the benign content
and the adversarial example will be small. So our goal is to keep this
TLSH difference under the explained threshold of 40. According to

our measurements, this requires that the size of the benign file is at
least 5 times larger than the size of the malware. The pseudocode
of Disguiser is presented as Algorithm 2.

Algorithm 2 𝐷𝑖𝑠𝑔𝑢𝑖𝑠𝑒𝑟

Input: malware binary𝑀𝑊 , pool of benign files 𝐵𝑁 _𝑃𝑂𝑂𝐿
Output: adversarial examples𝐴𝐷𝑉𝐸𝑋_𝑃𝑂𝑂𝐿
1: for all 𝐵𝑁 ∈ 𝐵𝑁 _𝑃𝑂𝑂𝐿 do
2: if sizeof (𝑀𝑊 )/sizeof (𝐵𝑁 ) < 0.2 then
3: 𝐴𝐷𝑉𝐸𝑋 ← 𝑀𝑊 + 𝐵𝑁
4: if TLSH_difference (𝐵𝑁,𝐴𝐷𝑉𝐸𝑋 ) < 40 then
5: add𝐴𝐷𝑉𝐸𝑋 to𝐴𝐷𝑉𝐸𝑋_𝑃𝑂𝑂𝐿
6: end if
7: end if
8: end for
9: return𝐴𝐷𝑉𝐸𝑋_𝑃𝑂𝑂𝐿

3.3 Measurement
In this work, we perform all experiments using the same dataset
as used for the evaluation of SIMBIoTA-ML in [13]. This dataset is
called CrySyS-Ukatemi benchmark dataset of IoT malware 2021 (or
CUBE-MALIoT-2021 for short). The dataset consists of 29,209 mali-
cious ARM samples and 18,715 malicious MIPS samples, extended
with 4,727 benign ARM samples and 9,392 benign MIPS samples.
For malicious samples, metadata is also available, which details,
among others, the date the sample was first seen in the wild (i.e.,
submitted to VirusTotal). CUBE-MALIoT-2021 is publicly available1
for use by the IoT malware research community.

According to our extensive measurements, adversarial examples
created from this data set with strategy Chunker do not mislead
SIMBIoTA-ML significantly (see Figure 3). On the other hand, the
robustness of SIMBIoTA-ML against adversarial examples produced
by strategy Disguiser is rather poor (see Figure 4). Basically, these
adversarial examples are constructed by concatenating a malware
and benign file in such a way that the size of the benign part is
at least five times larger than the size of malware part. Thus, the
TLSH values of these adversarial examples are more similar to the
TLSH values of benign files than to the TLSH values of malware
samples. Therefore, SIMBIoTA-ML misclassifies these adversarial
examples as a benign file. Moreover, there does not seem to be any
significant difference in the results in the ARM and the MIPS cases.

4 ADVERSARIAL TRAINING
In this section, we present a possible solution that antivirus com-
panies could use to increase the robustness of existing malware
detection systems against adversarial examples. In the previous
section, we saw two possible methods that attackers could use to
create adversarial examples that evade detection of SIMBIoTA-ML.
SIMBIoTA-ML is somewhat robust against the Chunker strategy,
but it can be misled by the Disguiser strategy. To overcome this
problem, we propose to use SIMBIoTA-ML with adversarial train-
ing.

Adversarial training has been used in the image recognition
domain to increase the robustness of ML-based models against
adversarial examples. We adopt this approach in the domain of
malware detection and demonstrate its effectiveness. Adversarial
1https://github.com/CrySyS/cube-maliot-2021 (accessed: April 22, 2023)
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training in our case means that that the training set of the malware
detector algorithm is extended with samples that are crafted by
using the adversarial evasion strategies that we proposed.

4.1 Setup
To use adversarial training on SIMBIoTA-ML we have to extend
the original training sample set with adversarial examples. Orig-
inally, SIMBIoTA-ML is trained on 10% of the malware dataset
introduced in Subsection 3.3 (see [13]). The samples in the training
set represent malware samples known to the antivirus company.
Therefore, we construct adversarial examples for adversarial train-
ing from malware samples only from the training set, because the
antivirus company has knowledge only about these files. After
training SIMBIoTA-ML on this extended set of training samples,
we test its performance on the original test set and adversarial
examples generated from the test set. In the following, SIMBIoTA-
ML is referred to as the upgraded SIMBIoTA-ML after adversarial
training and the original SIMBIoTA-ML before adversarial training.
Furthermore, we apply adversarial training separately in case of
the Chunker and Disguiser strategies.

For adversarial training, we have to determine how many ad-
versarial examples should be included in the training set. In case
of Chunker this is somewhat simpler than in case of Disguiser,
because the Chunker strategy creates one adversarial example from
one malware. Therefore, in case of Chunker we use for training all
adversarial examples created from malware files from the training
set. In case of Disguiser, the number of adversarial examples created
from a single malware can be larger, because the Disguiser strategy
pairs one malware with all available benign files and selects the
pairs that meet the constraints described in Subsection 3.2. To over-
come this problem, we created the LooseDisguiser strategy that is
similar to the Disguiser strategy: it pairs benign files with malicious
files and creates an adversarial example from a pair if the ratio of
the size of the malicious file to the size of the benign file is below 0.2.
However, unlike the Disguiser strategy, the LooseDisguiser strategy
does not consider the TLSH distance between the hosting benign
file and the constructed adversarial example. The LooseDisguiser
strategy has a so-called multiply factor parameter (instead of a
TLSH threshold) that defines the maximum number of adversarial
examples created from a malware. With LooseDisguiser, we can
create a constant number of adversarial examples per malware.

Depending on how many adversarial examples are added to
the training set, the accuracy of SIMBIoTA-ML changes on the
test adversarial example set and the original test set. In case of
Chunker, we use for training all adversarial examples created from
malware files from the training set. In case of LooseDisguiser, we
measure the accuracy of the upgraded SIMBIoTA-ML on the test
adversarial example set and on the original test set with different
multiply factors. In Figure 2 we see the results of this measurement.
In this figure, the ideal point is (1,1) which means 100% accuracy on
adversarial example test set and 100% on the original test set. In case
of ARM samples, the point corresponding to multiply factor 4 is the
closest to this ideal point, however, in case of MIPS samples this
multiply factor is 2. Seemingly, SIMBIoTA-ML is more sensitive to
noise (i.e., adversarial examples in the training set) in case of MIPS
samples. This phenomenon requires further investigation and may

Figure 2: The effect of the multiply factor of the LooseDisguiser
strategy on the accuracy of SIMBIoTA-ML w/ adversarial training,
in the ARM and MIPS cases. The multiply factors are shown in the
small circles, where each circle corresponds to a given combination
of accuracy values.

Table 1: Number of elements in the train and test adversarial samples
constructed w/ the Chunker, LooseDisguiser, and Disguiser strate-
gies, in the ARM and MIPS cases.

ARM
Adversarial sample set Chunker LooseDisguiser Disguiser

Training 2,685 - 2,715 11,644 - 11,680 –
Test 24,297 - 24,327 26,223 - 26,289 1,856 - 3,371

MIPS
Adversarial sample set Chunker LooseDisguiser Disguiser

Training 1,524 - 1,562 7,460 - 7,476 –
Test 13,869 - 13,907 16,816 - 16,820 3,483 - 4,382

lead to further research directions. To keep it simple, we choose
multiply factor 4 for LooseDisguiser in case of both architectures.

The exact numbers of samples obtained in this way are shown
in Table 1. In case of Disguiser, the train adversarial sample set is
empty, because we use the adversarial examples of this strategy only
for testing the original and the upgraded SIMBIoTA-ML. Similar
to the experiment in [13], we repeated the adversarial training 12
times to eliminate the effects of randomly splitting the dataset into
a 10% size training and 90% size testing part. Some cells of Table 1
contain intervals, rather than specific values, because the number
of elements in the train and test sets may differ slightly in the 12
measurements.

4.2 Results
In this subsection, we present the results of adversarial training on
SIMBIoTA-ML. We measure the detection accuracy of SIMBIoTA-
ML trained on the extended training set and show that it remains
high both for the original malware samples and for the adversarial
samples2.

In case of Chunker, on the left side of Figure 3, we see that
both the original and the upgraded SIMBIoTA-ML have ca. 99%
accuracy on the original test set. On the right side, we notice that
the test adversarial examples of Chunker somewhat mislead the
original SIMBIoTA-ML: its accuracy decreases to ca. 93%. At the
same time, accuracy of the upgraded SIMBIoTA-ML remains high at

2Note that when testing only with adversarial examples, the accuracy of the model
coincides with its recall
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Figure 3: Comparison of the accuracy of the original and the up-
graded SIMBIoTA-ML on the original test samples, and on the ad-
versarial test samples constructed w/ Chunker strategy, in the ARM
and MIPS cases.

ca. 99%. In Figure 4, we can see that SIMBIoTA-ML can be completely
mislead by both the Disguiser and the LooseDisguiser strategies.
After adversarial training with the samples of LooseDisguiser, the
upgraded SIMBIoTA-ML has a significantly increased accuracy on
the adversarial test set constructed with LooseDisguiser (ca. 97%).
Moreover, the upgraded SIMBIoTA-ML, which was trained with
the adversarial examples of LooseDisguiser, remains surprisingly
robust against adversarial examples of Disguiser too. While the
accuracy of SIMBIoTA-ML remarkably increases on adversarial
examples after adversarial training, the accuracy of the upgraded
SIMBIoTA-ML on the original test sample set is only slightly lower
than the original SIMBIoTA-ML’s accuracy.

4.3 Discussion
The antivirus company does not necessarily know the exact algo-
rithm of the attacker; in fact, most of the time this is the case. Our
setting models this scenario, because the antivirus company uses
LooseDisguiser for training, but the attacker uses the (more power-
ful) Disguiser strategy. Nonetheless, the upgraded SIMBIoTA-ML,
which was trained with the adversarial examples of LooseDisguiser,
is surprisingly robust against adversarial examples of Disguiser too.
The price that we have to pay for this robustness is the increased
training time and the increased size of the detection model; how-
ever, we argue that both are bearable in practice. In Subsection 4.1,
we saw that adversarial training requires an extended training set,
and usually, an increased training set comes with increased training
time and increased model size. This time, the increased training
time is not critical, because the adversarial training would be per-
formed on the backend (see Section 2) and we can assume that the
backend has practically unlimited resources compared to the IoT
devices. Regarding the model size, we indeed observe an increase
of 10%, in case of Chunker, and 20%, in case of Disguiser, due to the
1.5 and 3 times, respectively, increase of the training set size. This
translates to a few kilobytes of extra memory needed, which we
believe to be still acceptable even on the resource constrained IoT
devices.

5 RELATEDWORK
Unlike traditional solutions, ML-based malware detection can be
highly automated [20]. Furthermore, they use static and dynamic
program analysis for extracting the required feature vectors [14].
Hence, their detection capabilities are better than that of traditional
malware detection approaches. Feature vectors can be extracted
from different sources, including the samples’ instructions [18],
their control-flow, invoked API functions and system calls [1], grey
scale images of binaries, strings, and messages sent over network
[11]. In addition, solutions that combine machine learning with
cloud-based approach scale well and can be applied also in the IoT
field [17]. They can use different ML models, including convolu-
tional neural networks [15], recurrent neural networks, random
forest classifiers [18], fuzzy and fast fuzzy pattern trees [7].

There are many different approaches for adversarial attacks also
in the context of malware detection [4]. From these approaches
we can highlight append and slack attacks [16] for their simplicity.
Append attacks generate bytes and add them to the end of mal-
ware binary. Slack attacks add or modify bytes in slack regions
of a binary, which are gaps between neighboring sections of an
executable file. Our presented strategies (Chunker & Disguiser)
resemble the previously mentioned append attack. There are other
solutions for generating and appending bytes to the end of a binary,
including gradient-based approach [9]. Another more advanced
technique is program obfuscation, which can change the binary
representation of a program while preserving its functionality. In
order to do so, ML solutions can be used, including reinforcement
learning-based approaches [2], Generative Adversarial Networks
(GAN) and Recurrent Neural Networks (RNN) [8]. Obfuscating ex-
isting malware samples may be a successful strategy, but we do not
use it, because from the perspective of SIMBIoTA-ML, obfuscated
samples appear to be new malware, as their binary representations
can be completely different from those of the original samples from
which they were created. In other words, obfuscated samples are
considered new malware by SIMBIoTA-ML, and its detection per-
formance on them has already been measured in [13]. Adversarial
training is an effective way to increase the robustness of a ML-
based systems against adversarial examples and it can be applied
also in the malware detection domain. Indeed, there are several
existing solutions that use this technique to improve their malware
detection system [10], however, we applied first in the domain of
ML-based IoT malware detection.

6 CONCLUSION
In this paper, we studied the robustness of SIMBIoTA-ML, an ML-
based IoT malware detection method, against adversarial example
attacks. We constructed two different strategies for creating adver-
sarial examples from existing malware files: Chunker and Disguiser.
Both strategies append bytes to the end of the malware, so they
are relatively simple methods. Our measurement study shows that
in case of Chunker, SIMBIoTA-ML has high detection rate, while
in case of Disguiser, it has poor performance. To overcome this
problem, we used the adversarial training concept to increase the
robustness of SIMBIoTA-ML against the presented adversarial eva-
sion techniques. For adversarial training, we extended the training
sample set of SIMBIoTA-ML with adversarial examples constructed
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Figure 4: Comparison of the accuracy of the original and the upgraded SIMBIoTA-ML on the original test samples, and on the adversarial test
samples constructed w/ LooseDisguiser strategy, and on the adversarial samples constructed w/ Disguiser strategy, in the ARM and MIPS cases.

by the adversarial evasion strategies. After adversarial training, the
upgraded SIMBIoTA-ML became much more robust against sam-
ples of Chunker and Disguiser. Indeed, the upgraded SIMBIoTA-ML
detects the adversarial examples with practically the same accu-
racy as the original samples. The price that we have to pay for
this increased robustness was the increased training time and the
increased size of the detection model, however, we showed that
both are bearable in practice.
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