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Abstract—Nowadays, the field of embedded system experiences
a number of changes. On one hand, recent cyber attacks against
safety-critical systems demonstrate that malware can force safety-
critical systems to endanger human lives and harm the environ-
ment. Therefore, a new requirement of security have arisen for
safety-critical and embedded systems. However, security should
be designed hand in hand with safety to resolve conflicts between
the two fields. On the other hand, the emerging trend of virtu-
alization has significant impact on the embedded market. The
isolation and protection mechanisms of virtualization contributes
to both safety and security via redundancy and the prevention
of one virtual machine affecting another.

In this paper we present RoViM, a system of rotating virtual
machines providing proactive security for embedded devices.
RoViM uses multiple virtual machines in the system which
increases redundancy as a safety measure. Our design satisfies
reachability, liveness and safety requirements and we present
a proof-of-concept implementation with use case of an Internet
Protocol Security (IPsec) gateway. We evaluate our design with
formal verification and show that rotating virtual machines cause
no significant change in the performance of the IPsec gateway.

Keywords—embedded systems, proactive security, virtual ma-
chines, self-cleansing intrusion tolerance (SCIT)

I. INTRODUCTION

Embedded systems are special-purpose computer systems
which are dedicated to a single function and are tightly
constrained with respect to cost, power, size and storage.
Embedded systems react to changes in the environment. In
some appliances, they must compute results in real-time. They
are present in many field of our daily life, from electronic
stethoscopes to automotive applications and railway. They are
also the main driving force behind the concept of the Internet
of Things, where the majority of the connected devices will
be embedded computers instead of traditional PCs [1].

Safety-critical systems are special kinds of embedded sys-
tems whose malfunction may endanger human life or the
environment. Therefore, their design needs special emphasis
on safety among the traditional design requirements (reliabil-
ity, availability, etc.). However, recent cyber attacks such as
Stuxnet [2], and the threats discussed in [3] demonstrate that
certain pieces of malware can prevent safety-critical systems

from conforming with traditional requirements. Thus, a new
requirement have risen: security. However, in many cases,
existing security mechanisms affect traditional requirements
negatively. As a result, safety and security should be designed
hand in hand but the methodology required is still an area
of active research. Existing results include integrating security
analysis to existing tools [4] and modeling techniques [5], [6].

Not only the requirements, but also the technology of
the embedded field is changing too. The emerging trend
of virtualization in particular has significant impact on the
embedded market [7], [8]. For example, the ability to run
multiple virtual machines on the same physical board enables
certified legacy applications to be run on modern hardware
while emulating the outdated hardware the application was
written for. Virtualization also contributes to fault-tolerance
and reliability with its isolation and protection mechanisms
preventing a fault in one virtual machine to affect another.
What is more, the same isolation and protection mechanisms
are also security measures. Can virtualization become a basis
on top of which safety and security are designed together?

In this paper we aim to find the answer by designing a
system of rotating virtual machines, RoViM, that provides
proactive security for embedded devices. RoViM uses multiple
virtual machines in the system which increases redundancy
as a safety measure. Hence, our design satisfies security,
as well as reachability, liveness and safety requirements.
In addition, we present a proof-of-concept implementation
where we realize an Internet Protocol Security (IPsec) [9]
gateway using our RoViM approach. Our design is evaluated
by formal verification and the test results of our proof-of-
concept implementation shows no significant change to the
use-experience.

II. RELATED WORK

Our design of RoViM was inspired by the concept proposed
in [10] of Self-Cleansing Intrusion Tolerance (SCIT). Instead
of using reactive approaches to security, SCIT is a proactive
risk management approach that uses virtual machines. A
device implementing SCIT enjoys deletion of malware in every



minute, restoration to a pristine state, recovery from software
deletion attacks and cooperation with reactive approaches to
security. SCIT has been implemented in prototypes for several
use-cases in traditional IT environment such as Single Sign On
(SSO) [11] and Service-Oriented Architecture (SOA) [12].

The SCIT Architecture consists of three core components.
Firstly, a virtualization platform is needed for the virtual
machines but the architecture remains independent of the
chosen platform. Secondly, the SCIT controller is tasked with
controlling the rotation of the virtual machines. It is installed
on a secure machine within the internal network and acts as
a central component. Thirdly, a persistent short term memory
is required for processing data.

To our knowledge, the design principles of SCIT have never
been studied in the context of safety-critical systems. The
domain poses interesting challenges for the original concept
because devices run smaller and more limited applications
compared to standard PCs and servers. Plus, many devices
are not located inside a protected internal network but are
deployed out in the field. This renders the usage of a central
component inefficient in this context. In this paper, we replace
the central controller with a distributed solution. What is more,
handling persistent data in SCIT is a challenge. The difficulty
in the original concept arises from the practice of destroying
the virtual machine exposed to the network and replacing it
with a new one. This process destroys the temporary memory
resulting in the loss of persistent data. The authors overcame
this problem by using a Network Attached Memory which
acts as a shared memory between virtual machines. However, a
shared memory can be used as a stepping stone for the attacker
from one virtual machine to another. In this paper, we present
another solution to data propagation between virtual machines
that enables the close monitoring of persistent data and can
be used to efficiently detect possible compromises.

III. HIGH-LEVEL OVERVIEW OF THE SYSTEM

Our designed system, RoViM, follows the principles of
[10] and provides proactive security for embedded devices.
However, the design of RoViM takes into account not only
security, but the potentially safety-critical nature of the em-
bedded device as well. The system consists of multiple virtual
machines, each of which is capable of performing the same
task as the embedded device. The usage of multiple virtual
machines provides redundancy and thus contributes to the
overall safety of the embedded device.

Before the high-level overview of the system and our
assumptions can be discussed, some definitions must be made.
The active virtual machine is the virtual machine that performs
the task of the embedded device and is connected to and com-
municating with the outside world. Standby virtual machine(s)
provide redundancy and are on cold standby, waiting to take
the place of the active virtual machine. The standby virtual
machine that will become the active virtual machine in the
rotation is called the next active virtual machine. The cleansing
virtual machine previously acted as the active virtual machine
and is being restored to its compromise-free state. In practice,

the compromise-free state can be a snapshot taken before the
deployment of the embedded device. Rotations between virtual
machines happen periodically.

Our assumptions are as follows. We assume that the virtual
machines communicate via internal communication channels
(e.g., virtual LANs), non visible outside of the embedded
device. We anticipate communication failures between virtual
machines but require that the communication channel notifies
the system about such a failure. In our threat model, the at-
tacker can interact with the system and compromise the active
virtual machine just like he could compromise the embedded
device. However, we expect rotations to happen frequently
enough so that the attacker is unable to compromise standby
and cleansing virtual machines via the internal communication
channel used by the virtual machines.

The rotation of virtual machines should be as transparent
as possible to outside entities and services. However, devices
on the network must know or at least must be notified about
the changes in the address of the active virtual machine.
Otherwise, packets on the network would not be received
by the next active virtual machine. Therefore, nodes on the
network to accept updates to the network address of the
embedded device. For example, in case of Address Resolution
Protocol (ARP) on the data link layer, all devices in the local
network must process unsolicited ARP replies - which acts as
the notification of a rotation - and update their ARP caches.

Shown in Figure 1, one rotation is depicted with the high
level interaction needed for a single rotation to complete. The
unnumbered arrow between the active virtual machine and the
outside world highlights that the communication between the
active virtual machine and the outside world is not disrupted
by the rotations.

Fig. 1. High-level Overview of the Design

In the second phase, a standby virtual machine becomes
the next active virtual machine. Depending on the number
of standby virtual machines used, two cases are possible for
a standby virtual machine to become the next active virtual
machine. If there is one standby virtual machine (apart from
the previously restored virtual machine), that virtual machine



will automatically be the next active virtual machine. If there
are multiple standby virtual machines, they must agree on the
standby virtual machine that should become the next active
virtual machine. This problem translates to the well-known
leader election problem which has been discussed in literature
several times [13].

To become the active virtual machine, an interaction of
three subphases is needed between the active and the next
active virtual machines. A high-level description of the three
subphases is presented here and more details are discussed in
Section IV.

1) The next active virtual machine must acquire all required
data to perform the task of the embedded device cor-
rectly. As the active virtual machine is connected to
the outside and may be compromised, the data on it
may become corrupted and malware may be installed.
Our designed system can be extended to ensure that
no malicious content is propagated to other virtual
machines via validation of the application data. Also,
while the data from the active virtual machine is being
transmitted, the active virtual machine must make no
changes to the application data. Otherwise, the appli-
cation running on the next active virtual machine and
the entities in the outside world become out of sync.
In a sense, time must freeze for the application but this
may be against the safety mechanisms implemented by
the application. Therefore, the implementation of the
rotation must specify a time limit during which the next
active virtual machine can take the place of the active
virtual machine. If the next active virtual machine does
not succeed within the time limit, the rotation should be
aborted

2) The next active virtual machine must notify all nodes
on the local network to route packets currently destined
to the active virtual machine to the next active virtual
machine instead

3) The next active virtual must initiate the restoration
of the active virtual machine into a compromise-free
state. The active virtual machine is connected to the
outside world and may be compromised. We can assume
that it is not in the interest of the attacker to restore
compromised virtual machines to their compromise-free
state. Therefore, the procedure of cleansing must be
forced by the next active virtual machine. One such
cleansing procedure can be a reverting to a snapshot
taken before the deployment of the embedded device

A. Applications and RoViM

To complete the three-subphase protocol of taking the place
of the active virtual machine, the application is required to
provide all data necessary for its correct functioning in a form
that can be transmitted to other virtual machines. It is also
required to be able to restore that data when it is provided. As
a result, existing applications require some kind of adaptation
or extension to work in this paradigm.

Fig. 2. Interaction of Existing Application and Rotation API

We propose making applications aware of the rotation.
While new application can be developed with the rotation in
mind, existing applications can also be tailored to the rotating
environment with little effort from developers. As shown in
Figure 2, the rotation is implemented by a software layer we
refer to as the API. The API should control all resources the
application uses to be able to freeze time for the application. In
Figure 2, FIFO buffers are shown for all network interfaces the
application communicates through. Therefore, the reception
of packets can be delayed. The API communicates with the
application via events to signal different phases of the rotation.
When the data used by the application is needed to be copied to
the next active virtual machine, the application should provide
the data in a serialized form, for example, a file. The data may
consists of variables, configuration files, etc. The serialized
form is transmitted to the next active virtual machine where the
application reads the serialized form and restores the contents.
The serialized form of the data used by the application can also
be subjected to validation and be used to efficiently detect a
compromise. This approach is advantageous from the security
point of view as the API does not interact with the possibly
compromised memory of the application.

IV. TAKING THE PLACE OF THE ACTIVE VIRTUAL
MACHINE

As mentioned before, the active and the next active virtual
machines must complete a three-subphase interaction before
the cleansing procedure. The interaction can be achieved by
the following protocol of three subphases.

1) Subphase 1 - Transferring the Application State: During
Subphase 1, the next active virtual machine receives the data
of the application running on the active virtual machine. The
Subphase starts with a trigger message from the next active
virtual machine and acts as a request for the application
data in serialized form. The trigger causes the active virtual
machine to transmit the requested data to the next active virtual
machine. Note, that the transmission relies on no specific
protocol, the details of transmitting the serialized form is left
to the implementation. After receiving the trigger message, the
active virtual machine must not process incoming packets. A
processed packet at this time could change the application data,
rendering the transmitted serialized form out-of-date. Instead,
to avoid packet loss, packets are put on hold in buffers until
one of the two virtual machines is ready to process them.



As we anticipate communication failures, virtual machines
set a timeout during which messages must arrive. If a message
is not received within the time limit, it is considered lost.
After suffering specific amount of lost messages at either
virtual machine, that virtual machine assumes the channel to
be broken and aborts the protocol without further notice. The
time limit and the maximum number of lost messages should
be configured with respect to the safety requirements of the
embedded device.

2) Subphase 2 - Configuration of Network Interfaces:
Subphase 2 is attempted only if the application running on the
next active virtual machine has the data for the application.
After all, the next active virtual machine has no means of
performing the task of the embedded device if it is unable to
process packets because of the absence of the application data.
During Subphase 2, the active and next active virtual machine
configure their network interfaces and notify the networks
about the change in the address of the embedded device.

At the beginning of Subphase 2, the next active virtual
machine tries to bring its interfaces up through which the
application expects packets. If the process is successful, the
virtual machines continues the protocol; if unsuccessful, the
parties need to abort the protocol. In either case, the active
virtual machine is notified about the outcome. In case of
success, the next active virtual machine notifies the network
about the change in the address of the embedded device and
instructs the active virtual machine to bring its interfaces down.

Virtual machines might experience communication failures
during Subphase 2 as well. To recover from losing the message
containing the outcome of bringing up the interface of the
next active virtual machine, the active virtual machine sets
a time limit. When the time limit is exceeded, the active
virtual machine must poll the next active virtual machine for
the outcome. Why not abort the protocol? Let us assume
for a moment that after a specified amount of polling for
status, the active virtual machine deems the communication
channel broken and aborts the protocol. At this point both
virtual machines are capable of processing incoming packets:
both have the data for the application, the correct networking
configuration and are accepting packets from the outside. Now,
we have two virtual machines as the active virtual machine.
Depending on the timing of their packets sent, nodes in the
network might repeatedly update the address of the embedded
device and transmit packets to one of the virtual machines.
However, the embedded device and the outside world would
lose synchronization as the virtual machines would update
their data based on different packet flows.

3) Subphase 3 - Optional Buffering: During Subphase 3,
packets buffered during the interaction are relocated to the
virtual machine capable of processing them. If Subphases 1
and 2 finished successfully, buffered packets are transmitted
to the next active virtual machine and processed there. Before
relocating the buffered packets, the next active virtual machine
requests information about the size of the buffer. Depending on
the received size, it decides whether or not the time needed for
processing the packets is within the safety requirements. If the

protocol was aborted, the buffered packets are processed by the
active virtual machine. Buffered packets suffer latency which
depends on the size of the application data, the number of
packets arriving to the active virtual machine during Subphases
1 and 2 and the network throughput between virtual machines.
Depending on the safety requirements, the introduced latency
may or may not be acceptable. In some cases, where packet
loss is acceptable (e.g. communication using UDP) the buffer-
ing of packets should be disabled and packets arriving during
Subphases 1 and 2 should be dropped by the active virtual
machine.

Even though Subphase 3 is optional, chance of recovery
from possible communication failures is added to the protocol.
When the active virtual machine receives the command to
bring its interfaces down and Subphase 3 is enabled, it sets
a timeout during which the request for sending information
about the buffered packets must arrive. If the request does
not arrive, the active virtual machine forcibly sends the in-
formation to the next active virtual machine and waits for
the decision. If the decision does not arrive in time, it is
treated as a refusal. At the next active virtual machine, after
the request for information is sent, a timeout is set during
which the requested information has to arrive. If it does
not arrive, the next active virtual machine can retry and
then ultimately abandon Subphase 3 deeming minimizing the
latency introduced more important than avoiding packet loss.

A. Formal Verification

As Subphase 3 is optional, Subphases 1 and 2 of our
protocol discussed in Section IV was subjected to formal
verification. Space limitations does not allow us to present
the formal modal in more details. The interested reader is
referred to [14]. The following requirements are demanded
of Subphases 1 and 2:

• Reachability properties: Successfully reaching the end
of Subphase 2 and aborting either Subphase are both
possible

• Safety property: No deadlock occurs during Subphases
• Liveness property: Eventually one of the following sce-

narios happen: either Subphases 1 and 2 are both com-
pleted successfully or the protocol is aborted

We verified these properties with Uppaal, an integrated tool
for modeling, verifying and validated real-time systems [15].
Uppaal evaluates the state-space of the modeled system. The
state-space can be represented by a graph in which every node
contains a possible set of states of the system and directed
edges are possible changes is the state of the system. Queries
to the model-checker are expressed using a simplified version
of Timed Computation Tree Logic. The formal verification
was not aimed at finding security issues (those are discussed
in Section VII), but to check the correctness of the protocol
with respect to safety requirements.

V. PROOF-OF-CONCEPT IMPLEMENTATION

The environment of our proof-of-concept implementation is
shown in Figure 3. We implemented an IPsec gateway consist-



ing of four virtual machines (IPsecGatewayServer). The
IPsec gateway is an end-point of an IPsec tunnel establishing
secure communication between two end-points, the Client
and the Server. The Internet itself is modeled as network
between two routers.

Fig. 3. Use Case of IPsec Tunnel

In our proof-of-concept implementation, all virtual ma-
chines share the same IP address to the outside world which
makes rotations transparent in Layer 3 and above. However,
separate addresses are used in Layer 2 to differentiate between
the virtual machines. As a result, the destination address of the
frame decides which virtual machine receives the frame. It
must be mentioned that this solution works only if the Layer
2 address related to an IP address can be forcibly updated
at nodes on the local networks. As ARP is used in the data
link layer, notifications about the rotation are unsolicited ARP
replies sent by the gateway.

The rotating virtual machines use two additional net-
works for internal communication as shown in Figure 4.
The Leader Election network is used by the standby
virtual machines to decide the next active virtual machine.
The interaction needed for the active and next active virtual
machines to complete the rotation happens in the State
Exchange network. The separation of internal networks
ensures that standby virtual machines are separated from the
exposed active virtual machine. Virtual machines keep their
unnecessary network interfaces down.

Fig. 4. Internal Networks for Rotation

Our proof-of-concept implementation uses VMware ESXi
[16] as the virtualization platform. The virtual machines

all run the same operating system, Ubuntu 14.04 Server
LTS. Additional packages are installed for the implementa-
tion: openssh-server for transfer of application state,
ulogd2-pcap for implementing the FIFO buffers, arping
for sending unsolicited ARP replies and python-pip as the
implementation was written in Python.

VI. PERFORMANCE EVALUATION OF THE
IMPLEMENTATION

The proof-of-concept implementation aimed at uncovering
changes in the user-experience and to measure the overall
latency introduced by the rotation. A 500 Mb file was down-
loaded from the Server to the Client using wget. We
compared the performance of the proof-of-concept implemen-
tation to the performance of the environment without rotation.
During the download, one rotation was triggered manually.
Table I shows the results generated by Wireshark using the
captured packets at the Server.

TABLE I
CONTINUOUS PACKET FLOW WITH AND WITHOUT ROTATION

Without Rotation With Rotation
Transmission time 23.680 s 23.684 s
Duplicate IP address configured 0 3
Retransmissions 55 315

The TCP connection for the file transfer did not break while
the rotation was in effect. As expected, the rotation introduced
latency to the transmission. However, the transmission time
increased by only 4 ms, which did not have a significant
influence on the user-experience.

Wireshark gave the warning of Duplicate IP address con-
figured, realizing that while the IP address of the gateway did
not change, the MAC address did. This warning was present
three times in the packet flow, twice as a result of the interface
management of Ubuntu and once when the unsolicited ARP
reply was sent.

On the other hand, the rotation had a negative effect on the
retransmission timeout and introduced a significant increase in
the number of retransmissions. The algorithms used to calcu-
late the retransmission timeout [17] adjust the retransmission
timeout to the capabilities of the connection link: connections
with higher throughput have lower retransmission timeouts. In
our case, up until Subphase 1, the network throughput in the
test environment was very high, because there was no other
source of traffic and the test environment was also virtual.
Then, Subphase 1 started and all incoming packets were
buffered at the active virtual machine. This resulted in artificial
latency introduced to the segments and acknowledgement for
them were delayed. The artificial latency was high enough
for the Server to assume communication failure and it
retransmitted the segments affected by the latency. Therefore,
we can conclude that Subphase 3 is unnecessary for TCP
connections because the recovery mechanisms of TCP make
up for the lost segments.



VII. DISCUSSION ON SECURITY AND FUTURE WORK

As mentioned in Section III, the threat model used during
the design of the protocol assumes that the attacker does not
have enough time between rotations to use the internal commu-
nication channel between the virtual machines. Nevertheless,
if the next active virtual machine cannot succeed in taking over
the place of the active virtual machine repeatedly, the attacker
might gain the time needed to compromise standby virtual
machines as well. A few implications of such a scenario and
possible countermeasures are discussed here as future work.

Even though the next active virtual machine is honest and
brings down its interfaces to the internal network for standby
virtual machines, it may become compromised as the active
virtual machine. The attacker could bring this interface up
and interact with the standby virtual machines. For example,
the attacker could forge messages and prevent standby virtual
machines from winning the leader election. As a future work,
we propose that instead of bringing down interfaces, virtual
machines becoming the active virtual machine should be
reconfigured without access to the network in which the leader
election takes place.

Another way for the attacker to compromise the next active
virtual machine is through the application data the next active
virtual machine requests during Subphase 1. If the attacker
provides malicious content instead of the required data for the
application, the attacker might exploit a vulnerability in the
application and compromise the next active virtual machine.
If the attacker sends bogus data or does not transmit the
data at all, the application is cut from the data needed to
provide seamless execution from the outside world’s point of
view. While malicious content or bogus data can be detected
by extensive input validation, the denial of service situation
arising from the missing data is not easily handled.

The fault-tolerance of the designed system could be im-
proved by using fault detection. In the current design, a fault
in the active virtual machine can render the system unable to
function as the application state is lost with the active virtual
machine. What is more, the fault may not even be detected
if it occurs before the start of Subphase 1 as there is no
interaction between the standby and the active virtual machines
before that point in time. By adding fault detection, the standby
virtual machines could monitor the performance of the active
virtual machine and determine when it experiences faults. The
fault detection could also be used to save the current state
of the application if no fault is detected. On the other hand,
the activity involved would add to the attack surface of the
standby virtual machines, potentially allowing the attacker to
compromise the standby virtual machines.

At the time of writing, the proof-of-concept implementation
runs in a PC environment. As the next step, the code will be
ported to an embedded Linux operating system running on a
multi-core architecture. The use-case will demonstrate an open
deterministic network with mixed-criticality.
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