
A pipeline for processing large datasets of
potentially malicious binaries with rate-limited

access to a cloud-based malware analysis platform
Dávid Maliga
CrySyS Lab

Budapest University of Technology
and Economics

Budapest, Hungary
dmaliga@crysys.hu

Roland Nagy
CrySyS Lab

Budapest University of Technology
and Economics

Budapest, Hungary
rnagy@crysys.hu

Levente Buttyán
CrySyS Lab

Budapest University of Technology
and Economics

Budapest, Hungary
buttyan@crysys.hu

Abstract—In this paper, we present a pipeline that we designed
for cleaning and processing large datasets of potentially malicious
binaries using access to a rate-limited cloud-based malware
analysis platform. Our goal is to efficiently filter out and discard
benign files, to extract metadata from the remaining, likely-
to-be-malware samples, and to create graph-based databases
containing only metadata of verified malware. The main issue
that we have to solve is the limited quota for accessing online
malware analysis platforms that can be used for deciding about
the maliciousness of a binary and obtaining metadata from static
and dynamic analysis of samples. Our pipeline solves the problem
by reaching a state where every sample in the database is either
confirmed malware (based on its VirusTotal report) or similar to
a confirmed malware with a minimal amount of requests made
to the online platform. A database in such a state is already
usable in practice, while confirming the malicious nature of and
extracting metadata for all the samples in it can be continued in
the background.

Index Terms—malware datasets, metadata extraction, graph
database, binary similarity

I. INTRODUCTION

Malware (i.e., malicious software) is a long-standing prob-
lem in computer security. Indeed, malicious actors have cre-
ated malware for many types of computers (including per-
sonal computers, servers in the cloud, smart phones, and,
recently, embedded Internet of things (IoT) devices) for fun
or for profit, causing substantial inconveniences and damage
of different kinds for owners and operators of IT systems.
In addition, there is an arms race between attackers and
security professionals, in which attackers constantly create
new pieces of malware that try to evade the malware de-
tection techniques developed by security professionals. As a
consequence, thousands of new malware samples appear every
day, including brand new species and just variants of known
families. To keep up with the pace of creating new malware,
security professionals must invent novel, automated methods
for malware detection. A popular recent approach is to use
machine learning (ML) for this purpose.

ML-based malware detection requires large datasets of mali-
cious and benign programs for training and testing ML models.

For this reason, security professionals try to capture potentially
malicious programs in large quantities with honeypots, and
share the captured samples with others in the security com-
munity in the form of malware feeds or, sometimes, publish
datasets containing captured samples for research purposes.

However, the quality of such feeds and datasets is often
unclear; for instance, they may also contain benign files
captured erroneously by the honeypots. Therefore, feeds and
datasets of potentially malicious programs shared within the
professional community or published for research purposes
need to be cleaned, and preferably processed further, to be
useful. Cleaning essentially means filtering out benign files and
keeping only likely-to-be malware samples, whereas further
processing tasks may include extracting metadata from the
samples that can serve as features for ML-based techniques.

Both cleaning malware feeds and datasets and extraction of
metadata from a large amount of samples can be supported by
cloud-based malware analysis platforms such as VirusTotal1,
Any.Run2, and FileScan.IO3. These online services allow for
submitting suspicious files to them, which they analyze in
different ways, and they respond with an analysis report from
which one can figure out if the submitted sample was indeed
a malware and extract various metadata of the sample. For
instance, a VirusTotal (VT) analysis report contains the votes
of multiple antivirus (AV) engines regarding the maliciousness
of the submitted sample and it also contains information about
the dynamic behavior of the sample when executed in a
sandbox. Hence, a VT report can be used conveniently to
decide if the sample was indeed a malware and to extract
metadata that would otherwise be difficult to obtain just from
the sample itself (e.g., by static analysis).

The problem that we address in this paper is that cloud-
based malware analysis platforms typically limit the rate at
which one can submit samples and request their analysis. The

1https://www.virustotal.com/, Last accessed: 2024.07.31
2https://any.run/, Last accessed: 2024.07.31
3https://filescan.io/, Last accessed: 2024.07.31

https://www.virustotal.com/
https://any.run/
https://filescan.io/


reasons for such rate limitations are that analyzing samples is
demanding in terms of computational resources and platform
operators want to preserve the availability of their services.
So, when using cloud-based malware analysis platforms for
cleaning feeds and large datasets of potentially malicious files
and for extracting metadata of the samples in them, one faces
the challenge that the process will last for an extended period
of time, while, at the same time, it would often be useful to
use the feed or the dataset as soon as possible. Imagine, for
instance, an antivirus vendor that receives a malware feed from
a honeypot operator: the antivirus vendor would obviously
like to use the samples in the feed to retrain their ML-based
malware detection model and distribute the retrained model to
their clients as soon as possible. Perhaps, processing delay is
not such a pressing issue for malware datasets published for
research purposes; however, the issue here is that such datasets
can be huge (much larger than daily feeds as they contain
samples captured over a longer period of time), containing
potentially hundreds of thousands of samples, and processing
them may require months. So even in this case, one would
like to reduce the time needed for being able to begin using
the dataset.

In this paper, we propose a pipeline for cleaning and
processing large datasets of potentially malicious binaries
using rate-limited access to a cloud-based malware analysis
platform. In the implementation of our pipeline, we used
VirusTotal as the online analysis platform, but the design of
our pipeline is general, not limited to VirusTotal, and it can
be easily adapted to other online platforms too. In order to
make a large dataset of potentially malicious samples usable
as soon as possible, our pipeline tries to quickly reach a state
in which every sample in the dataset being cleaned is either
proven to be malware according to its VT report or similar to a
sample which is proven to be malware. So, while in this state,
we have no proven information for the latter kind of samples,
they are likely to be malware too due to their similarity to
samples known to be malware. We believe that a dataset in
such a state is already usable. Moreover, reaching such a
state requires only a limited amount of requests submitted
to the online analysis platform (see the next paragraph for
understanding why). Once this state is reached, we continue
requesting analysis reports for all as-yet-unproven samples,
while maintaining the property that every sample in the dataset
being cleaned is either proven to be malware or similar to a
sample which is proven to be malware. Hence, the dataset
remains to be usable throughout the rest of the potentially
long cleaning process.

The main idea of our design is first to construct a graph
representing the dataset where the nodes correspond to the
samples and two nodes are connected by an edge if the corre-
sponding samples are similar; then to compute a dominating

set4 of the graph; and finally to request, from the online
platform, the analysis reports of the samples corresponding to
the dominating set. Thanks to the typically clustered nature of
the graphs representing malware datasets, the dominating set
is much smaller than the entire graph, resulting in a relatively
small number of queries to the online platform with respect
to the size of the entire dataset. Moreover, if the analysis
reports for the samples corresponding to the dominating set
indicate that they are indeed malware, then, by definition of
the dominating set, we reached the state where every sample
in the dataset is either proven to be malware or similar to a
sample proven to be malware.

The rest of our paper is organized as follows: Section II
introduces the tools and services we used to implement our
pipeline. Section III gives an overview on how the pipeline
works, while Section IV discusses the details of the algorithms
we developed to clean and to process malware feeds or
datasets. Section V describes how we validated our solution
by using it to clean and to extract metadata from a large IoT
malware dataset. Finally, Section VI concludes our paper.

II. BACKGROUND

In this section, we briefly introduce the tools and services
we use as building blocks of our pipeline and describe the kind
of metadata we extract and store for each malware sample.

A. VirusTotal

Our pipeline uses VT for deciding if a given sample in
a feed or dataset is malware. VT is a cloud-based malware
analysis platform, where users can search for malware samples
by hash value or upload suspicious files for deciding whether
they are malware or not. When a sample is submitted for
analysis, it is evaluated by multiple AV products and analyzed
by additional static and dynamic analysis methods. The plat-
form presents to the user the results of the analyses and how
the different AV products categorized the sample. While VT
provides this functionality for free, it is mainly intended to be
used by human users. More intense interactions with VT using
scripts is possible, but rate-limited: the public API allows only
500 requests per day and only 4 requests per minute. VT also
has a subscription-based private API, which allows for more
requests, but even with that, VT quotas cannot be considered
limitless. So downloading VT reports for submitted samples is
considered to be an expensive operation, and it is a bottleneck
in every malware feed or dataset processing pipeline, including
ours.

B. AVClass

AVClass5 is a python script that can label large amount of
malware samples, using, for example, VT reports. It is capable
of aggregating the labels given by the different AV products.

4A dominating set D of a graph G is a subset of G’s vertices such that
each vertex of G is either in D or a neighbor of a vertex in D. Note that
computing the minimum dominating set is an NP-hard problem, but there
exist efficient greedy algorithms that compute a good approximation of the
minimum dominating set (i.e., a sufficiently small dominating set).

5https://github.com/malicialab/avclass, Last accessed: 2024.07.31

https://github.com/malicialab/avclass


By default, the output of AVClass will most likely contain
malware family names, but it is capable of aggregating other
tags assigned by the AV engines, which capture information
about the nature of the malware (e.g., ransomware, dropper,
trojan), behavioral information (e.g., spam, ddos), or properties
of the files themselves (e.g., if they are packed). We use
AVClass for extracting some metadata of the samples from
their VT reports.

C. TLSH
TLSH stands for Trendmicro Locality Sensitive Hash, and

it is a similarity digest scheme [1]. Similarly to cryptographic
hash functions, it maps an input of arbitrary size to a fixed
length output, but unlike cryptographic hash functions, it lacks
the avalanche effect property. As a result, for similar inputs,
TLSH gives similar hash values. Beside the hash computation
algorithm, a difference score computation algorithm was pub-
lished as well, which can be used to quantify the (dis)similarity
of two TLSH hash values, and thus their corresponding inputs.
A difference score of 0 means that the two inputs are identical
or nearly identical, while the higher the score is, the less
similar the inputs are.

In our pipeline, we use TLSH to determine similarity
between malware samples in order to build a similarity graph6.
In this graph, every node represents a malware sample, and two
nodes are connected if and only if they are considered similar
(i.e., the TLSH difference of their TLSH hash values is below
a certain threshold). This similarity relationship is useful in the
different stages of the processing, when not all information is
available about every sample yet. In particular, we can infer
certain properties of a sample (e.g., which malware family it
may belong to) that has no available VT report yet by looking
at the already available VT reports of similar samples.

D. Neo4j
We use Neo4j, a graph-based database management system,

for storing the metadata extracted from the samples of a
feed or dataset and the similarity relationships between the
samples. Beside storing the structure of a graph (in our
case, the similarity graph of the samples), Neo4j can also
store metadata as attributes of nodes (representing samples)
and edges (representing similarity relationships). Moreover,
it can store large amounts of data in an ACID-compliant,
transactional manner, while it is capable of interacting with
libraries developed for many commonly used programming
languages. Despite not being open-source software, Neo4j has
a so called community edition, available under GPL license.
Some features, like high availability are not supported by this
edition, but these limitations do not hinder its use in our
pipeline.

E. Metadata
For each malware sample that our pipeline processes, we

extract metadata from the file itself and from its corresponding
VT report.

6We note that our approach is not limited to using TLSH, but it can also
work with other similarity hash functions such as Ssdeep [2] or Sdhash [3].

For identification purposes, we compute several hashes from
each file, like MD5, SHA-1, SHA-256. We also compute the
file’s TLSH hash for being able to relate it to similar files. We
extract information about the architecture which the executable
file was compiled for, including processor type and bitness.
We also store if it is an executable file or a shared library,
if it is statically or dynamically linked, and its file size. We
compute the entropy values of the sample using a tool called
bintropy [4]; these values can be used to determine if the
sample is packed or not.

From the downloaded VT reports, we extract when the
sample was first submitted to VT, how many AV products
found it to be malicious, and the labels given by these AV
tools, aggregated using AVClass. A timestamp is stored as
well to indicate when were the labels aggregated.

III. DESIGN CHOICES

Our objective is to clean and process feeds and datasets
of potential malware binaries using a cloud-based malware
analysis platform with rate-limited access. Fig. 1 illustrates a
high-level overview of our approach. We designed a pipeline
that can receive malware feeds and datasets from a variety of
sources, including honeypot farms, commercial malware feeds
and public malware repositories or datasets. Our pipeline has
multiple internal processes (e.g., filtering, metadata extractor,
maintenance) that help deciding if a sample is indeed malware
and, if so, extract or retrieve some of its metadata, or discard
the sample and log its SHA-256 value. The metadata of the
samples and the similarity relationships between the samples
are then stored in a graph-based database. Our pipeline uses
VirusTotal as an external component providing rate-limited
malware analysis services online.

We store all the metadata in Neo4j, a graph-based database.
In this database, each sample is represented by a node with
the sample’s metadata as properties of the node, and similar
samples are connected by relationships. We chose Neo4j
because it enables us to organize and store the similarity
relationships between samples conveniently.

Another design choice was to create separate metadata
databases for different CPU architectures. The main reason
for this was to reduce database complexity and to allow for
efficient querying and data management. For example, when
training a malware detection model for ARM devices, it makes
sense to train only on ARM samples and query only the ARM
database for features for the model.

As mentioned in Section I, we want to ensure that every
node in the graph is either confirmed to be malware according
to its VT report or similar to a sample that is proven to be
malware. To achieve this, we use labelling in Neo4j. The
properties of a node in the database represent the metadata
of a sample, with some metadata extracted from the sample
itself and some from its VT report. If the properties of a node
only contain the metadata extracted from the sample itself, the
node is labeled Incomplete. If it also contains the metadata
extracted from the VT report, the node is labeled Complete.
Based on this, the main requirement can be stated as follows:



Fig. 1: High-level overview of our proposed pipeline

at least one relationship from each node of the graph labeled as
Incomplete must connect to a node labeled as Complete.

An important point is that our pipeline uses the VT report
of a sample to determine whether it is malware or not. More
specifically, if more than 5 AV engines used by VT flag a
sample as malware, then it is considered as malware. We chose
this threshold because AVClass could not return family labels
for samples with 5 positive votes or less. Since we cannot
be certain if those samples are malware, we prefer to discard
them to maintain the quality of the databases produced by our
pipeline.

As mentioned earlier, two nodes are in a relationship if
the corresponding samples are similar to each other, and to
measure the (dis)similarity of samples, we use the TLSH
similarity digest scheme. More specifically, we consider two
samples similar, if their TLSH difference is smaller than a
threshold. Determining the appropriate threshold value was an
important part of our design. For this purpose, we constructed
similarity graphs for 2000 randomly chosen malware samples
using different threshold values; calculated the average clus-
tering coefficients of these graphs; and chose the threshold that
resulted in the largest clustering coefficient. We performed the
above steps, and hence, obtained a threshold value for each
CPU architecture. In other words, the appropriate threshold
may be different for different architectures. For more details
on our threshold selection methodology, the reader is referred
to our prior work [5].

IV. PROCESSING QUEUES

In this section, we discuss how the pipeline processes new
samples, extracts their metadata, and inserts them into the
output databases. Two processing queues play an important
role in the processing of a new dataset and its integration into
the database. The first processing queue (Queue 1) minimizes
the number of requests made to VirusTotal by integrating
samples into the database based on their similarity to already
confirmed malware in the database. The second processing
queue (Queue 2) is used to process the samples that could
not be added to the database by the first queue. The operation
of the second queue is also designed to minimize the number
of requests made to VirusTotal. After processing by Queues
1 and 2, the database typically still contains nodes labeled
as Incomplete. This means that these nodes are not yet
confirmed to be malware, although they are similar to already

confirmed malware samples. The role of the Maintenance
process is to process these remaining Incomplete samples
in the background, and turn them Complete, which includes
downloading their VT reports; requesting a re-analysis if
needed; deciding if they are indeed malware; and filling in
all their missing metadata.

A. Queue 1

For the following discussion, we assume that the output
database already contains metadata and similarity relationships
of a set of samples; an empty database is just a special case
when that set of samples is empty. Every new sample that we
want to add to the database is processed by Queue 1, which
performs the following operations: (i) Check if the SHA-256
value of the given sample already exists in the database; if
so, then the sample is already in the database and no further
steps are needed. (ii) Check if the given sample is similar to a
sample in the database that is labeled Complete. If this is not
the case, the sample is passed for further processing to Queue
2. Otherwise, (iii) extract metadata from the sample and add
a node with the extracted metadata to the database labeled as
Incomplete. Finally, (iv) add also all the relationships of
the new sample with similar samples in the database.

Note that Queue 1 does not use at all the cloud-based
malware analysis platform; it adds new samples to the database
based on their similarity to already confirmed malware (nodes
labeled Complete) in the database. In addition, Queue 1 adds
new samples to the database in such a way that it preserves the
property that every node in the database is either confirmed
malware or similar to a confirmed malware.

B. Queue 2

Queue 2 processes a set of new samples that were not
found to be similar to any confirmed malware samples in the
database by Queue 1. The processing steps are the following:
(i) Represent the set of new samples to be added to the
database as a graph where the nodes represent the samples
and two nodes are connected by an edge if the corresponding
samples are similar (according to the similarity threshold
defined earlier). (ii) Calculate a dominating set of the graph
representing the new samples. (iii) Download the VT reports
of the samples in the dominating set. (iv) Extract metadata
from all new samples and metadata from the VT reports of
the samples in the dominating set. (v) Add the new samples



with their metadata to the database labeling the samples in the
dominating set Complete and the rest of the new samples
(having no VT reports yet) Incomplete. Finally, (vi) add
also all the similarity relationships among the new samples
and between the new samples and the existing samples in the
database.

Certain specific cases may require special treatment. One
such case is when a new sample in the dominating set is not
yet known to VT or its VT report indicates that it is a benign
sample. In this situation, we discard the sample and repeat
the above steps (such that the set of new samples no longer
contains the discarded one). Note that we save VT reports
locally continuously, so when repeating the above steps, we
do not actually download VT reports for any sample multiple
times, in order to minimize quota usage.

C. Maintenance

After the samples have passed through the process-
ing queues, the output database contains nodes labeled as
Complete or Incomplete. A node labeled Incomplete
always has a similarity relationship with at least one node
labeled Complete. For this reason, the database is considered
usable at this stage. Once the database reaches this point, we
start requesting VT reports for samples labeled Incomplete
in the background and turn them into Complete nodes.
During this completion process, we ensure the preservation of
the property that each sample in the database is either proven
to be malware or similar to a sample that is proven to be
malware. This keeps the database usable during the potentially
long maintenance process.

The maintenance process is potentially long, because it
must download VT reports for the Incomplete nodes in
the database while respecting the quotas. When a VT report
is downloaded, metadata can be extracted from it, and hence,
the Incomplete node can be turned Complete by adding
the extracted metadata to the database. However, there are
two special cases to consider: (i) no VT report is available
or it may indicate that the sample is benign and (ii) the VT
report is not trustworthy7. In case (i), we simply delete the
sample (including its metadata and relationships) from the
database. Note that, as this sample was an Incomplete
node, deleting it does not invalidate the property that every
sample in the database is either confirmed malware or similar
to a confirmed malware. In case (ii), we request a re-analysis
of the sample by VT and obtain a fresh VT report. If the fresh
report still indicates that the sample is malware, we insert it
in the database in the way described above.

V. EVALUATION

A. Dataset

Our approach is evaluated using datasets (A, B, C, D-1
and D-2) [6], [7] collected by Yokohama National Univer-
sity (YNU) by capturing potentially malicious files with two

7We consider a VT report untrustworthy when it was done too close (within
1 week) to the time the sample was first submitted to VirusTotal, and only a
few (at most 10) AV engines judged it to be malicious at that time.

honeypots [7]–[9]. The datasets contain 234, 145 samples, out
of which samples in three datasets (A, B, C) have additional
VT reports attached. These samples helped us to initialize
the database with Complete nodes and we evaluated the
processes that were explained in Section IV using samples
from the remaining two datasets (D-1, D-2). Note that these
honeypots are specifically designed to simulate vulnerable
IoT devices, so the datasets contain malware targeting such
devices. We further narrowed the scope to ELF binaries
developed for the ARM and MIPS architectures. After fil-
tering out the ARM and the MIPS samples, and checking
their already available VT reports, our initial ARM database
contained 22, 351 nodes and 12, 338, 886 edges, while the
MIPS database contained 27, 745 nodes and 26, 263, 112 edges
(both constructed with TLSH difference threshold 50).

B. Measurement of processing queues

We measure the time to add metadata of a new sample to
the database. This includes measuring the average, minimum
and maximum elapsed time to compare the sample with all
nodes in the database, extract metadata from the sample, and
then insert the sample and its relationships into the database.
For the results see Table I.

TABLE I: Processing times of new samples expressed in
seconds (s)

Architecture Avg. elaps. Min. elaps. Max. elaps.
ARM 73.523 1.087 791.1
MIPS 39.498 1.029 442

We also measured the number of samples processed by the
processing queues. Regarding dataset D-1:

• 27, 913 ARM and 14, 181 MIPS samples were added to
the database by Queue 1;

• 20, 180 ARM and 10, 136 MIPS samples were passed to
Queue 2; and

• 194 ARM and 151 MIPS samples were already in the
database (duplicates from datasets A, B, or D).

Regarding dataset D-2:

• 1, 958 ARM and 1, 481 MIPS samples were added to the
database by Queue 1;

• 1, 370 ARM and 848 MIPS samples were passed to
Queue 2; and

• 1, 745 ARM and 1, 178 MIPS samples were already in
the database.

C. Quota usage

After some pre-filtering, dataset D-1 contained 48, 287
ARM samples and 24, 768 MIPS samples to be added to the
database, and in dataset D-2, we had 5, 073 ARM samples and
3, 507 MIPS samples to be processed with our pipeline. Tables
II and III show the amount of VT quota usage by Queue 2
and the maintenance processes (note that Queue 1 does not
use any VT quota).



TABLE II: VirusTotal quota used to fully process samples in
dataset D-1

Purpose of quota usage ARM MIPS Total
Queue 2 14, 754 7, 828 22, 582
Complete Incomplete nodes 33, 339 16, 789 50, 128
Check untrustworthy nodes 1, 802 1, 946 3, 748

Total 49, 895 26, 563 76, 485

TABLE III: VirusTotal quota used to fully process samples in
dataset D-2

Purpose of quota usage ARM MIPS Total
Queue 2 1, 295 817 2, 112
Complete Incomplete nodes 2, 031 1, 512 3, 543
Check untrustworthy nodes 12 10 22

Total 3, 338 2, 339 5, 677

D. Final result

Initially, there were a total of 234, 315 binaries in the five
datasets. After the full evaluation, 101, 631 samples remained
in the databases; 101, 620 samples were discarded after filter-
ing for ARM and MIPS binaries, and an additional 31, 064
samples were discarded due to duplicates and because they
were found benign or unknown by VT. After all the processing,
the metadata database for the ARM samples consists of the
metadata of 55, 497 samples that were found malicious based
on their VT report and there are 25, 119, 599 similarity rela-
tionships between these samples. The MIPS metadata database
consists of metadata of 46, 134 malware samples and there
are 23, 069, 282 similarity relationships among them. The
databases that we created are available on GitHub8 together
with the source code of our pipeleine components9.

VI. CONCLUSION

In this paper, we proposed a pipeline for cleaning and
processing large datasets of potentially malicious binaries
using rate-limited access to a cloud-based malware analysis
platform. Our primary design objective was to minimize the
time needed to reach a state in which the dataset being
cleaned and processed is usable in practice. We achieved this
by building a metadata database from the samples in the
dataset and ensuring that we quickly bring this database into
a state where every sample included in the database is either
confirmed malware or similar to a confirmed malware. So,
while in this state, we have no proven information for the latter
kind of samples, they are likely to be malware too due to their
similarity to samples known to be malware. Once this state is
reached, our pipeline continues requesting analysis reports for
all as-yet-unproven samples from the online malware analysis
platform, and by doing so, converts the incomplete database
to a complete one in the background, while it remains usable
throughout the entire process.

We evaluated our pipeline by cleaning and processing
five IoT malware datasets (A, B, C, D-1 and D-2) made

8https://github.com/CrySyS/CrySyS-IoT-MMDB-2024
9https://github.com/CrySyS/CrySyS-IoT-MMDB-Maintainer

publicly available by the Yokohama National University. Our
pipeline processed 101, 631 samples and created two metadata
databases, one for samples developed for the ARM architec-
ture and another for MIPS binaries, containing metadata for
55, 497 and 46, 134 samples, respectively. We measured the
performance of our pipeline in terms of processing time and
VT quota usage. We reached the state where the metadata
databases were already usable with only 22, 582 and 2, 112 VT
requests compared to the total numbers of 76, 485 and 5, 677
VT requests needed for completing all records, for the ARM
and MIPS samples, respectively. This means that the usable
state of the databases was reached with around 30-40% of the
total effort, which we consider a significant result.

VII. ACKNOWLEDGEMENTS

The research presented in this paper was supported by the
European Union project RRF-2.3.1-21-2022-00004 within the
framework of the Artificial Intelligence National Laboratory
and by the European Union’s Horizon Europe Research and
Innovation Program through the DOSS Project (Grant Number
101120270). The presented work also builds on results of
the SETIT Project (2018-1.2.1-NKP-2018-00004), which was
implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary,
financed under the 2018-1.2.1-NKP funding scheme. The
authors are also thankful to VirusTotal for the academic license
provided for research purposes.

REFERENCES

[1] J. Oliver, C. Cheng, and Y. Chen, “TLSH – A Locality Sensitive Hash,”
in 2013 Fourth Cybercrime and Trustworthy Computing Workshop, 2013,
pp. 7–13.

[2] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital Investigation, vol. 3, pp. 91–97, 2006.

[3] V. Roussev, “Data Fingerprinting with Similarity Digests,” in Advances in
Digital Forensics VI, K.-P. Chow and S. Shenoi, Eds., Berlin, Heidelberg,
2010, pp. 207–226.

[4] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted and
Packed Malware,” IEEE Security & Privacy, vol. 5, pp. 40–45, 2007.

[5] L. Buttyán, R. Nagy, and D. Papp, “SIMBIoTA++: Improved similarity-
based IoT malware detection,” in Proceedings of the IEEE Conference on
Information Technology and Data Science (CITDS), Debrecen, Hungary,
May 2022.

[6] Y. M. Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT threats,”
Journal of Information Processing, vol. 24, pp. 522–533, 2016.

[7] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: Analysing the rise of IoT compromises,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15), Washington,
D.C., aug 2015. [Online]. Available: https://www.usenix.org/conference/
woot15/workshop-program/presentation/pa

[8] S. Kato, R. Tanabe, K. Yoshioka, and T. Matsumoto, “Adaptive Observa-
tion of Emerging Cyber Attacks targeting Various IoT Devices,” in 2021
IFIP/IEEE International Symposium on Integrated Network Management
(IM), 2021, pp. 143–151.

[9] R. Tanabe, T. Tamai, A. Fujita, R. Isawa, K. Yoshioka, T. Matsumoto,
C. Gañán, and M. van Eeten, “Disposable botnets: examining the anatomy
of IoT botnet infrastructure,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, New York, NY, USA,
2020.

https://github.com/CrySyS/CrySyS-IoT-MMDB-2024
https://github.com/CrySyS/CrySyS-IoT-MMDB-Maintainer
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa

	Introduction
	Background
	VirusTotal
	AVClass
	TLSH
	Neo4j
	Metadata

	Design choices
	Processing queues
	Queue 1
	Queue 2
	Maintenance

	Evaluation
	Dataset
	Measurement of processing queues
	Quota usage
	Final result

	Conclusion
	Acknowledgements
	References

