
Consistency verification of stateful firewalls is not harder 
than the stateless case 

 
Levente Buttyán         Gábor Pék        Ta Vinh Thong 
buttyan@crysys.hu          pek@crysys.hu         thong@crysys.hu 

 
Laboratory of Cryptography and Systems Security  

Department of Telecommunications 
Budapest University of Technology and Economics 

 
Abstract: Firewalls play an important role in the enforcement of access control policies in 
contemporary networks. However, firewalls are effective only if they are configured correctly 
such that their access control rules are consistent and the firewall indeed implements the 
intended access control policy. Unfortunately, due to the potentially large number of rules and 
their complex relationships with each other, the task of firewall configuration is notoriously 
error-prone, and in practice, firewalls are often misconfigured leaving security holes in the 
protection system. In this paper,  we address the problem of consistency verification of stateful 
firewalls that keep track of already existing connections. For the first sight, the consistency 
verification of stateful firewalls appears to be harder than that of stateless firewalls. We show 
that, in fact, this is not the case: consistency verification of stateful firewalls can be reduced to 
the stateless case, and hence, they have the same complexity. We also report on our prototype 
implemetation of an automated consistency verification tool that can handle stateful firewalls.  

     
1. Introduction 
 
Firewalls are the cornerstones of improving the security of enterprise networks. Simple 

packet filter firewalls work in a stateless manner: they inspect the packets passing through the 
perimeter of the network as independent objects, and decide to accept or deny them according 
to a predefined static ruleset. Modern firewalls, however, are more complex and perform 
stateful packet inspection: they keep track of the already existing connections and they decide 
about the fate of a packet based on both its header information and the state of the connection 
that it belongs to. 
 
In practice, firewalls are often misconfigured. Misconfiguration errors result in 

inconsistencies in the firewall [1, 7]. An example for a critical inconsistency is when all the 
packets that are intended to be denied by a given rule of the firewall are accepted by some 
preceding rules. This is called shadowing, because the intended effect of the deny rule is 
cancelled by the preceding accept rules. Shadowing is a critical inconsistency, because it is 
likely that the deny rule is there to stop some well-known malicious traffic, however, due to 
the shadowing, that traffic is not actually stopped by the firewall. Such inconsistencies can 
easily occur when the firewall has a distributed implementation and/or when it is managed by 
multiple administrators; both being frequent cases in large organizations. 
 

  Checking a large firewall (i.e., hundreds of access control rules) for inconsistencies is 
difficult and prone to errors when it is done in an ad-hoc, non-systematic manner. Thus, 
several formal methods and automated tools have been proposed in the literature 
[1,2,3,4,5,6,7,8,9,10,11,12], but essentially all of them were designed for finding 
inconsistencies in stateless firewalls. However, stateful firewalls are much more broadly used 
nowadays due to their connection tracking feature. Finding inconsistencies in stateful 
firewalls has been considered to be harder than the stateless case due essentially to the 
potentially very large size of the state space. A first attempt to model stateful properties of 



firewalls is presented in [13], but that work does not propose any method to find 
inconsistencies in stateful firewalls. 
 
In this paper, we propose a modeling technique for states and, for the first time, a systematic 

method for detecting inconsistencies  in  stateful  firewalls. We model a state as a particular 
subset of the firewall ruleset that consists of all the static rules and those dynamic rules that 
are relevant in the given state. We show that the number of inconsistencies in any state cannot 
be larger than the number of inconsistencies in the designated state that includes all dynamic 
rules. Hence, it is sufficient to check that single designated state for inconsistencies: if no 
inconsistency is found in that state, then no other state can contain any inconsistencies. 
Moreover, if the designated state is not free of inconsistencies, then this fact proves that the 
firewall is inconsistent in at least one state (the designated one). Therefore, we essentially 
reduce the consistency verification of a stateful firewall to the consistency verification of a 
single static ruleset.    

 
In order to automate the verification, we implemented a software tool in C#, which is 

capable of finding inconsistencies in the configuration of stateful firewalls. Our tool is based 
on FIREMAN [7], an approach which was originally developed for stateless firewalls. We 
note, however, that the real power of our approach is that any stateless tool could have been 
used. We used the FIREMAN approach beacuse it uses Binary Decision Diagrams (BDD) for 
handling IP  range  set  operations,  such  as intersection and union, and BDDs are  
conceptually simple and very efficient. 
 
The rest of the paper is organized as follows:  We define inconsistecies and inefficiencies in 
Section 2.  We give a brief overview of the connection-tracking feature of contemporary 
firewalls in Section 3. In Section 4 we introduce our main theorems and their proofs, while 
Section 5 reports on our implementation. Finally, we conclude the paper and give some 
future plans in Section 6. 
 
2. Inconsistencies and inefficiencies in firewalls 

  The configuration of a firewall consists in the ruleset that the firewall uses for filtering the 
traffic. A stateless rule is represented in the form <P, action>, where P corresponds to a 
predicate describing the criteria that a packet has to meet to match the rule, and action is the 
corresponding action that is executed when there is a match to the rule. In case of stateless 
rules, predicate P can be represented as a 5-tuple  (prot, srcaddr, srcport, dstaddr, dstport), 
where prot refers to a protocol (tcp, udp, icmp), srcaddr is the source IP address range, 
srcport is the source port range, dstaddr is the destination IP address range, and dstport is the 
destination port range that should be matched by a packet.  In addition, an action can be 
accept or deny, the meaning of which should be intuitively clear.  
 
The ruleset of a firewall may be inconsistent and/or inefficient. In this paper, we consider 
three types of inconsistencies: shadowing, generalization, and correlation; and one 
inefficiency: redundancy. These have also been considered in prior works of others [1,7], but  
in a stateless environment. In Section 4, we show that they can be defined in the case of 
stateful firewalls as well. In this section, we give the definitions of these inconsistencies and 
inefficiencies.  
 
We use the following notation: Let R be a ruleset that consists of stateless rules ri = <Pi , 
actioni>, where Pi = (proti, srcaddri, srcporti, dstaddri, dstporti). We say that (Pj ⊆ Pi) iff 



(proti ⊆ protj) ∧ (srcaddri ⊆ srcaddrj) ∧ (srcporti ⊆ srcportj) ∧ (dstaddri ⊆ dstaddrj) ∧ 
(dstporti ⊆  dstportj ).  Similarly, (Pj⋂Pi ≠ 0) iff (proti ⋂ protj ≠ 0) ∧ (srcaddri ⋂ srcaddrj ≠ 0) 
∧ (srcporti ⋂ srcportj≠ 0) ∧ (dstaddri ⋂  dstaddr ≠ 0j) ∧ (dstporti ⋂  dstportj  ≠ 0) . 
 
A rule is shadowed by a preceding rule if it is a subset of the preceding rule; and the two rules 
define different actions: 
Definition  (Shadowing)  Rule (ri = <Pi , actioni>) ∈ R  shadows  rule (rj = <Pj , actionj>) 
∈ R  if  and  only  if  (i  <  j) ∧ (Pj ⊆  Pi ) ∧ (actioni ≠  actionj ),  where  i  and  j  denote  
the  order  of  rules  in  a ruleset R. 
 
A rule is a generalization of a preceding rule if it is a superset of the preceding rule and the 
two rules define different actions: 
Definition  (Generalization)  Rule  (ri = <Pi , actioni>) ∈ R  is the generalization of  rule  
(rj = <Pj , actionj>) ∈ R  if  and  only  if (i  >  j) ∧ (Pj   ⊆  Pi ) ∧ (actioni ≠  actionj). 
 
Two rules are correlating if their intersection is not empty, they are not related by the superset 
or subset relations, and they define different actions. Packets that match the intersection will 
take the action of the preceding rule: 
Definition  (Correlation)  Rule (ri = <Pi , actioni>) ∈ R and (rj = <Pj , actionj>) ∈ R are 
correlating  if  and  only  if (Pj ⋂ Pi ≠ 0) ∧ (Pj ⊈ Pi) ∧ (Pi ⊈ Pj) ∧  (actioni ≠  actionj). 
 
A rule is redundant if the removal of it would not affect the operation of the firewall. In case 
of masked redundancy (defined below) the successor rule is unnecessary, while in case of 
partially masked redundancy (also defined below) the preceding rule is unnecessary: 
Definition  (Redundancy)  Rule   (ri = <Pi , actioni>)  ∈ R  is redundant with respect to  
rule   (rj = <Pj , actionj>)∈ R  if  and  only  if at least one of the following two conditions are 
satisfied: 

Masked redundancy: (Pi ⊆  Pj), where (i > j) ∧ (actioni= actionj) 
Partially masked redundancy: (Pi ⊆  Pj), where (i < j) ∧ (actioni= actionj ). 

 
Note that not all these inconsistencies and redundancies are equally critical. Usually, only 
shadowing is considered to be a configuration error, while generalization and correlation are 
in fact often used by firewall administrators to make a ruleset compact. Nevertheless, it may 
be the case that some of the generalizations and correlations are not intentional, in which 
case, it is useful to detect them and let the administrator decide if they are harmful or not. 
Redundancy is not considered a serious configuration error either, but redundant rules are 
clearly useless, therefore, it is worth identifying and removing them, and increasing the 
efficiency of filtering by doing so.   
 
 
3. Connection-tracking with iptables 

In order to understand the model described in the next section, we shortly review how 
connection-tracking works in iptables, a stateful firewall that we used in our work. Other 
stateful firewalls work in a similar manner. 
 
Iptables defines tables and chains to complete certain operations on packets at different points 
of the checking. We consider only the input and output chains, and the filter table for 
demonstration purposes. An extensive description of iptables can be found in [15]. 



 
Connection-tracking is the basis of stateful firewalls. It refers to the ability to maintain state 
information about a connection as an entry in a state table.  Entries are inserted in and 
removed from the state table according to the packets the firewall is examining. For instance, 
we demonstrate how connection-tracking tracks a TCP connection establishment.  
 
Suppose we have the following rules in the output and input chains of the filter tables, 
respectively:  
 

1. iptables -A OUTPUT -p tcp -m state --state NEW, ESTABLISHED -j ACCEPT;  
2. iptables -A INPUT  -p tcp -m state --state ESTABLISHED -j ACCEPT, 

 
Connection-tracking classifies each packet as being in different states: NEW (if the packet 
initiates a new connection), ESTABLISHED (if the packet is associated with a connection that 
has encountered packets in both directions), RELATED (if the packet initiates a new 
connection, but also associated with an already established connection.), INVALID (not part 
of an existing connection). For instance, the second rule above means that only packets that 
belong to an established connection are permitted to enter the network.  
 
Once a syn packet that initiates a TCP connection is sent in the output chain, and accepted by 
the first rule above that allows a NEW connection, the following connection table entry is 
created:   
 
tcp 6 54 SYN_SENT src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 [UNREPLIED] 
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1 
 
Here, tcp refers to the protocol of the connection (and 6 is its numerical form), the remaining 
time before removal of this entry is 54 seconds, SYN_SENT is the tcp state of the connection, 
src and dst are the source and destination IP addresses, sport and dport are the source and 
destination ports of the connection, and UNREPLIED refers to the connection-tracking state of 
the connection. In the following, the addresses and ports are listed in reverse order for the 
response traffic.  
 
When a syn+ack packet arrives, the entry in the connection tracking table is modified as 
follows: 
  
tcp 6 60 SYN_RCVD src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 src=154.32.43.44 
dst=10.0.0.1 sport=22 dport=1506 use=1 
 
One can see that the TCP connection state changes to SYN_RCVD, while the tracked 
connection-state changes from NEW to ESTABLISHED. Note that the tracked connection 
states (NEW, ESTABLISHED, etc.) are different from the TCP connection establishment 
states (SYN_SENT, SYN_RCVD, etc.). 
 
Finally, when the last part of the three-way TCP connection establishment handshake, an ack 
packet arrives from the server, the connection-tracking entry becomes:  
 
tcp 6 43 1995 ESTABLISHED src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 [ASSURED] 
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1 
 



The TCP state of the connection is altered to ESTABLISHED and the connection-tracking state 
of the connection is modified to ASSURED. ASSURED connections are not dropped from the 
state table when the connection is overloaded. Note that the remaining time value is increased 
to a previously defined timeout value. 
 
4. Verification  of  stateful  firewalls 

In case of a stateless firewall, inconsistencies and inefficiencies between rules can be 
detected by means of static analysis of the ruleset. In case of a stateful firewall, the detection 
appears to be harder, because the static analysis has to be performed in all possible states of 
the firewall in order to be sure that the ruleset always remains consistent. In this section, we 
show that this is indeed not the case, and it is sufficient to verify a single designated state for 
inconsistencies in order to prove that the firewall’s rule set is consistent in all possible states. 
For doing so, we must first introduce the notion of firewall state: 
 
Definition  (Stateful rules). A firewall rule is said to be stateful if it defines state 
information, and is presented in the form <P , action, stateinfo>. 
 
Definition (Firewall state)  The state s of a  firewall includes all the static firewall rules and  
those  dynamic (stateful) rules that  have an associated entry in the connection-tracking  
table. 
 
As an example, let us consider the following rule set, where the first three rules are dynamic 
(stateful) rules and the fourth rule is a static rule: 
 
Rule 1: iptables –A OUTPUT –s 10.0.0.1 –dport 80 –m state – state NEW, ESTABLISHED –j ACCEPT 
Rule 2: iptables –A OUTPUT –s 10.0.0.1 –dport 443 –m state – state NEW, ESTABLISHED –j ACCEPT 
Rule 3: iptables –A OUTPUT –s 10.0.0.1 –dport 22 –m state – state NEW, ESTABLISHED –j ACCEPT 
Rule 4: iptables –A OUTPUT –s 10.0.0.1 –dport 22  –j DROP 
 
In addition, let us suppose that the following two entries have been created in the connection-
tracking table (as the result of processing some packets earlier): 
1. tcp  6  54  SYN_SENT  src=10.0.0.1  dst=154.32.43.44  sport=6322  dport=80  [UNREPLIED] 
src=154.32.43.44  dst=10.0.0.1  sport=80  dport=6322  use=1 
2. tcp  6  432  ESTABLISHED  src=10.0.0.1  dst=154.32.43.44  sport=1506  dport=443 
[ASSURED]  src=154.32.43.44  dst=10.0.0.1  sport=443  dport=1506  use=1 
 
 
As one can see, in this state, Rules 1 and 2 have associated entries in the connection-tracking 
table, while Rule 3 has no such entry. This means that in this state, no packet can match Rule 
3, and therefore, it can be ignored. At the same time, packets may match Rules 1 and 2, due 
to the entries in the connection-tracking table, and packets may also match Rule 4, as it is a 
static rule (i.e., independent of any states). For this reason, Rules 1, 2, and 4 must be 
considered in this particular state. This means that, essentially, the state of the firewall can be 
represented by those three rules. 
 
It is natural to encode such a firewall state as a binary vector the length of which is equal to 
the number k of the dynamic (stateful) rules in the rule-set. This is illustrated in Figure 1. It 
trivially follows that the number of all possible firewall states is 2k. 
 



 
 

Figure 1:  Encoding the firewall state as a binary vector. 
 
We can now introduce a partial ordering ≤ on the set S of all possble states: 
  
Definition (Partial ordering of firewall states)  Let s and s’ be two states of the same 
firewall (i.e., two binary vectors of the same length). We have s ≤ s’ if all the dynamic rules 
that are included in s are also included in s’. In other words, if the i-th element of the binary 
vector corresponding to s is 1, then the i-th element of the binary vector corresponding to s’ 
is also 1. 
 
The key idea of our work is that we show that whenever s ≤ s’, the number of inconsistencies 
in s cannot be larger than the number of inconsistencies in s’. The next theorem states this for 
the number of shadowings: 
 
Theorem (Shadowing)  Let s and s’ be two states of the same firewall such that s ≤ s’. The 
number of shadowings in s cannot be larger then the number of shadowings in s’.  
 
Proof:  Without loss of generality, we can assume that the i-th stateful rule ri of the firewall 
rule-set is included in s’, otherwise s’ contains no stateful rules, which means that s = s’, and 
the statement of the theorem follows trivially. Let us denote by s” the state that we obtain 
from s’ by removing rule ri.  
 
Now, if there exists a (stateful or stateless) rule rj of the same firewall, such that either ri 
shadows rj or rj shadows ri, then removing ri from s’ and obtaining s” surely decreases the 
number of shadowings. Otherwise, if no rule shadows ri and no rule is shadowed by ri, then 
removing ri from s’ and obtaining s” does not affect the number of shadowings. 
 
As state s can be obtained from s’ by iteratively removing from s’ the dynamic rules that are 
not contained in s, the statement of the theorem can be obtained by iteratively using the above 
argument. ♣ 
 
Similar theorems can be stated and proven in the same way for the other types of 
inconsistencies and inefficiencies (see [14] for details). This leads to the following main  
theorem: 



 
Theorem (Reduction to the stateless case)  Let sall-1 be the state that contains all dynamic 
rules of the rule set. If no inconsistencies and inefficiencies exist in state sall-1, then all states 
are free from inconsistencies and inefficiencies, and hence, the firewall configuration is 
correct. 
 
Proof: Immediately follows from the fact that s ≤ sall-1 for any state s of the firewall. ♣ 
 
The consequence is that it is sufficient to verify the firewall in state sall-1 for inconsistencies, 
and this can be done by using any static analysis tool. Note that for the sake of this static 
analysis, the dynamic rules are converted to static rules by ignoring those parts of their 
predicate that refer to some state information.   
 
 
5.  Implementation 

In our implementation, we used the approach called FIREMAN [7], which applies static 
analysis techniques to check misconfigurations, such as policy violations, inconsistencies and 
inefficiencies in individual firewalls as well as in distributed firewalls using symbolic model 
checking and Binary Decision  Diagrams (BDD). Based on the concepts of FIREMAN, we 
implemented the methodology of stateful verification described in the previous chapter as a 
software tool.  In the rest of this section, we briefly explain the operation of FIREMAN, and 
hence, our tool. 
 
Inspired by the successfully applied software implementations of the previous works [1,7] a 
new application was implemented in C# that is capable of verifying a stateful firewall con- 
figuration.  First of all, this tool builds upon the methodology of the aforementioned works, 
but uses its own Binary Decision Diagram class, to make calculations (union, intersection, 
subset) on IP ranges as quickly as possible.  Binary Decision Diagram is a data structure 
which can represent Boolean functions.  It is a rooted, acyclic, directed graph which 
comprises several non-terminal (decision) nodes and terminal nodes with assigned value 
either 1 (the Boolean function is true) or 0 (the Boolean function is false).  When an IP range 
is presented in BDD form, the number of non-terminal nodes is given by the length of the 
corresponding netmask.  Each decision node is one of the variables of the Boolean function. 
Interested redears are referred to [7,14] for more details and examples. 
 
In the following, the functioning of the application is presented: First and foremost, a valid 
iptables rule file has to be opened.  Right after it, the application parses the rules of the file 
one-by-one, and tries to recognize the given parameters and their values.  If a suggested 
parameter is not set, then default values are used instead. An example is when one does not 
specify explicitly the destination port in a corresponding rule.  In this case, all packets 
carrying one of the valid ports in the range [1, 65535] are accepted.  When one rule is parsed 
then it is compared against with the already stored preceding rules at once.  This is the task of 
the static analysis method that was previously mentioned.  Naturally, the trivial translation of 
stateful rules into stateless ones is done when the  current  rule  has  state  information.  
According  to  the  definition  of  firewall  state,  there is  no  need  to  distinguish  rules  with  
different  state  information  (NEW,  ESTABLISHED, RELATED, etc.,)   so  they  are  
handled  uniformly.   As  it  was explained previously, there is only one state sall-1, which 
contains all the stateful (and stateless rules), that has to be checked.  There  are  two  internal  
lists  defined,  where  the  parsed  rules  are  put:  AcceptList  and DenyList, where 



AcceptList contains rules with action ACCEPT and DenyList stores rules with action DENY. 
Note that iptables defines two declining action values:  REJECT and DROP. In fact each of 
them refers to the internal representation of DENY. The pseudo-code in Table 1 demonstrates 
the core of stateful verification. 
 
 

StatefulVerfication(String  firewallRuleFile){ 
struct  Rule  { 

Boolean  isStateful; Boolean  isInBitVector; String  protocol; 
BDD  sourceIP; 
BDD  destinationIP; Port  sourcePort; 
Port  destiantionPort; String  action; 
String  stateInformation; Integer  numberOfRule; 

} 
Rule  ruleSet[NUMBER_OF_RULES]; 
ruleset  =  MakeInternalRepresentation(firewallRuleFile); 
forall  (Rule  rule  in  ruleset){ 

if  (  rule.isStateful  ==  true)  { 
rule.isInBitVector  =  true; 

} 
} 
RunStatelessAnalysis(ruleSet); 

} 
      
                          Table 1: The pseudo code of stateful verification. 

                             
 
It is essential to put efforts on the demonstration of the application by verifying firewalls that 
are  used  in  practice.   In  order  to  satisfy  these  kind  of  requirements  two  firewalls at 
BME are analyzed by means of the implemented tool.  The  machine that we used for the 
verification was an  IBM Thinkpad R40 notebook with Intel Pentium 4-M processor and 512 
MB DDR RAM. 
 
As Figure 2 shows, many inconsistencies and inefficiencies have been found among the 
firewall rules. In details, there are around 70 firewall rules among which there are 155 
shadowings, 14  generalizations,  15  correlations  and  434  redundancies. The verification 
time needed to discover all these inconsistencies and inefficiencies required less than 4sec.  
 
6.  Conclusion and future work 

So far, formal methods have been considered only for the verification of stateless firewall. In 
this paper, we proposed, for the first time, a formal verification method for stateful firewalls. 
Our contributations are three-fold: First, we introduced a modelling technique for states, and 
defined the notion of inconsistecy in case of the stateful environment. Second, we reduced 
the  problem  of  verifying  a  stateful  firewall  to  the  problem  of  verifying a stateless 
firewall. More specifically, we proved that if the firewall configuration is free from 
inconsistencies and inefficiencies in a designated state, then it is free from these anomalies in 
all  states.  Third,  we implemented our approach as a prototype stateful firewall verification 
tool, and used it for verifying real firewalls used in practice.  Our experiments  show  that the 
tool is effective and efficient. 



 
 

Figure 2.  Screen shot of the prototype implementation. 
 

Regarding future work, there are many possible improvements that are yet to be done. Our 
approach could be extended to distributed firewalls, where  multiple  filters organized in some 
topology must  function  together  without  anomalies. It would also be interesting  to  extend  
this  approach  to  the  complex  chain model of iptables. Finally, the  implementation  can  be  
extended  to  support  other  firewall  products  too,  such  as  the Checkpoint FireWall-1 and 
Cisco ASA. 
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