
Consistency verification of stateful firewalls is not harder
than the stateless case

Levente Buttyán Gábor Pék Ta Vinh Thong
buttyan@crysys.hu pek@crysys.hu thong@crysys.hu

Laboratory of Cryptography and Systems Security

Department of Telecommunications
Budapest University of Technology and Economics

Abstract: Firewalls play an important role in the enforcement of access control policies in
contemporary networks. However, firewalls are effective only if they are configured correctly
such that their access control rules are consistent and the firewall indeed implements the
intended access control policy. Unfortunately, due to the potentially large number of rules and
their complex relationships with each other, the task of firewall configuration is notoriously
error-prone, and in practice, firewalls are often misconfigured leaving security holes in the
protection system. In this paper, we address the problem of consistency verification of stateful
firewalls that keep track of already existing connections. For the first sight, the consistency
verification of stateful firewalls appears to be harder than that of stateless firewalls. We show
that, in fact, this is not the case: consistency verification of stateful firewalls can be reduced to
the stateless case, and hence, they have the same complexity. We also report on our prototype
implemetation of an automated consistency verification tool that can handle stateful firewalls.

1. Introduction

Firewalls are the cornerstones of improving the security of enterprise networks. Simple

packet filter firewalls work in a stateless manner: they inspect the packets passing through the
perimeter of the network as independent objects, and decide to accept or deny them according
to a predefined static ruleset. Modern firewalls, however, are more complex and perform
stateful packet inspection: they keep track of the already existing connections and they decide
about the fate of a packet based on both its header information and the state of the connection
that it belongs to.

In practice, firewalls are often misconfigured. Misconfiguration errors result in

inconsistencies in the firewall [1, 7]. An example for a critical inconsistency is when all the
packets that are intended to be denied by a given rule of the firewall are accepted by some
preceding rules. This is called shadowing, because the intended effect of the deny rule is
cancelled by the preceding accept rules. Shadowing is a critical inconsistency, because it is
likely that the deny rule is there to stop some well-known malicious traffic, however, due to
the shadowing, that traffic is not actually stopped by the firewall. Such inconsistencies can
easily occur when the firewall has a distributed implementation and/or when it is managed by
multiple administrators; both being frequent cases in large organizations.

 Checking a large firewall (i.e., hundreds of access control rules) for inconsistencies is
difficult and prone to errors when it is done in an ad-hoc, non-systematic manner. Thus,
several formal methods and automated tools have been proposed in the literature
[1,2,3,4,5,6,7,8,9,10,11,12], but essentially all of them were designed for finding
inconsistencies in stateless firewalls. However, stateful firewalls are much more broadly used
nowadays due to their connection tracking feature. Finding inconsistencies in stateful
firewalls has been considered to be harder than the stateless case due essentially to the
potentially very large size of the state space. A first attempt to model stateful properties of

firewalls is presented in [13], but that work does not propose any method to find
inconsistencies in stateful firewalls.

In this paper, we propose a modeling technique for states and, for the first time, a systematic

method for detecting inconsistencies in stateful firewalls. We model a state as a particular
subset of the firewall ruleset that consists of all the static rules and those dynamic rules that
are relevant in the given state. We show that the number of inconsistencies in any state cannot
be larger than the number of inconsistencies in the designated state that includes all dynamic
rules. Hence, it is sufficient to check that single designated state for inconsistencies: if no
inconsistency is found in that state, then no other state can contain any inconsistencies.
Moreover, if the designated state is not free of inconsistencies, then this fact proves that the
firewall is inconsistent in at least one state (the designated one). Therefore, we essentially
reduce the consistency verification of a stateful firewall to the consistency verification of a
single static ruleset.

In order to automate the verification, we implemented a software tool in C#, which is

capable of finding inconsistencies in the configuration of stateful firewalls. Our tool is based
on FIREMAN [7], an approach which was originally developed for stateless firewalls. We
note, however, that the real power of our approach is that any stateless tool could have been
used. We used the FIREMAN approach beacuse it uses Binary Decision Diagrams (BDD) for
handling IP range set operations, such as intersection and union, and BDDs are
conceptually simple and very efficient.

The rest of the paper is organized as follows: We define inconsistecies and inefficiencies in
Section 2. We give a brief overview of the connection-tracking feature of contemporary
firewalls in Section 3. In Section 4 we introduce our main theorems and their proofs, while
Section 5 reports on our implementation. Finally, we conclude the paper and give some
future plans in Section 6.

2. Inconsistencies and inefficiencies in firewalls

 The configuration of a firewall consists in the ruleset that the firewall uses for filtering the
traffic. A stateless rule is represented in the form <P, action>, where P corresponds to a
predicate describing the criteria that a packet has to meet to match the rule, and action is the
corresponding action that is executed when there is a match to the rule. In case of stateless
rules, predicate P can be represented as a 5-tuple (prot, srcaddr, srcport, dstaddr, dstport),
where prot refers to a protocol (tcp, udp, icmp), srcaddr is the source IP address range,
srcport is the source port range, dstaddr is the destination IP address range, and dstport is the
destination port range that should be matched by a packet. In addition, an action can be
accept or deny, the meaning of which should be intuitively clear.

The ruleset of a firewall may be inconsistent and/or inefficient. In this paper, we consider
three types of inconsistencies: shadowing, generalization, and correlation; and one
inefficiency: redundancy. These have also been considered in prior works of others [1,7], but
in a stateless environment. In Section 4, we show that they can be defined in the case of
stateful firewalls as well. In this section, we give the definitions of these inconsistencies and
inefficiencies.

We use the following notation: Let R be a ruleset that consists of stateless rules ri = <Pi ,
actioni>, where Pi = (proti, srcaddri, srcporti, dstaddri, dstporti). We say that (Pj ⊆ Pi) iff

(proti ⊆ protj) ∧ (srcaddri ⊆ srcaddrj) ∧ (srcporti ⊆ srcportj) ∧ (dstaddri ⊆ dstaddrj) ∧
(dstporti ⊆ dstportj). Similarly, (Pj⋂Pi ≠ 0) iff (proti ⋂ protj ≠ 0) ∧ (srcaddri ⋂ srcaddrj ≠ 0)
∧ (srcporti ⋂ srcportj≠ 0) ∧ (dstaddri ⋂ dstaddr ≠ 0j) ∧ (dstporti ⋂ dstportj ≠ 0) .

A rule is shadowed by a preceding rule if it is a subset of the preceding rule; and the two rules
define different actions:
Definition (Shadowing) Rule (ri = <Pi , actioni>) ∈ R shadows rule (rj = <Pj , actionj>)
∈ R if and only if (i < j) ∧ (Pj ⊆ Pi) ∧ (actioni ≠ actionj), where i and j denote
the order of rules in a ruleset R.

A rule is a generalization of a preceding rule if it is a superset of the preceding rule and the
two rules define different actions:
Definition (Generalization) Rule (ri = <Pi , actioni>) ∈ R is the generalization of rule
(rj = <Pj , actionj>) ∈ R if and only if (i > j) ∧ (Pj ⊆ Pi) ∧ (actioni ≠ actionj).

Two rules are correlating if their intersection is not empty, they are not related by the superset
or subset relations, and they define different actions. Packets that match the intersection will
take the action of the preceding rule:
Definition (Correlation) Rule (ri = <Pi , actioni>) ∈ R and (rj = <Pj , actionj>) ∈ R are
correlating if and only if (Pj ⋂ Pi ≠ 0) ∧ (Pj ⊈ Pi) ∧ (Pi ⊈ Pj) ∧ (actioni ≠ actionj).

A rule is redundant if the removal of it would not affect the operation of the firewall. In case
of masked redundancy (defined below) the successor rule is unnecessary, while in case of
partially masked redundancy (also defined below) the preceding rule is unnecessary:
Definition (Redundancy) Rule (ri = <Pi , actioni>) ∈ R is redundant with respect to
rule (rj = <Pj , actionj>)∈ R if and only if at least one of the following two conditions are
satisfied:

Masked redundancy: (Pi ⊆ Pj), where (i > j) ∧ (actioni= actionj)
Partially masked redundancy: (Pi ⊆ Pj), where (i < j) ∧ (actioni= actionj).

Note that not all these inconsistencies and redundancies are equally critical. Usually, only
shadowing is considered to be a configuration error, while generalization and correlation are
in fact often used by firewall administrators to make a ruleset compact. Nevertheless, it may
be the case that some of the generalizations and correlations are not intentional, in which
case, it is useful to detect them and let the administrator decide if they are harmful or not.
Redundancy is not considered a serious configuration error either, but redundant rules are
clearly useless, therefore, it is worth identifying and removing them, and increasing the
efficiency of filtering by doing so.

3. Connection-tracking with iptables

In order to understand the model described in the next section, we shortly review how
connection-tracking works in iptables, a stateful firewall that we used in our work. Other
stateful firewalls work in a similar manner.

Iptables defines tables and chains to complete certain operations on packets at different points
of the checking. We consider only the input and output chains, and the filter table for
demonstration purposes. An extensive description of iptables can be found in [15].

Connection-tracking is the basis of stateful firewalls. It refers to the ability to maintain state
information about a connection as an entry in a state table. Entries are inserted in and
removed from the state table according to the packets the firewall is examining. For instance,
we demonstrate how connection-tracking tracks a TCP connection establishment.

Suppose we have the following rules in the output and input chains of the filter tables,
respectively:

1. iptables -A OUTPUT -p tcp -m state --state NEW, ESTABLISHED -j ACCEPT;
2. iptables -A INPUT -p tcp -m state --state ESTABLISHED -j ACCEPT,

Connection-tracking classifies each packet as being in different states: NEW (if the packet
initiates a new connection), ESTABLISHED (if the packet is associated with a connection that
has encountered packets in both directions), RELATED (if the packet initiates a new
connection, but also associated with an already established connection.), INVALID (not part
of an existing connection). For instance, the second rule above means that only packets that
belong to an established connection are permitted to enter the network.

Once a syn packet that initiates a TCP connection is sent in the output chain, and accepted by
the first rule above that allows a NEW connection, the following connection table entry is
created:

tcp 6 54 SYN_SENT src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 [UNREPLIED]
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1

Here, tcp refers to the protocol of the connection (and 6 is its numerical form), the remaining
time before removal of this entry is 54 seconds, SYN_SENT is the tcp state of the connection,
src and dst are the source and destination IP addresses, sport and dport are the source and
destination ports of the connection, and UNREPLIED refers to the connection-tracking state of
the connection. In the following, the addresses and ports are listed in reverse order for the
response traffic.

When a syn+ack packet arrives, the entry in the connection tracking table is modified as
follows:

tcp 6 60 SYN_RCVD src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 src=154.32.43.44
dst=10.0.0.1 sport=22 dport=1506 use=1

One can see that the TCP connection state changes to SYN_RCVD, while the tracked
connection-state changes from NEW to ESTABLISHED. Note that the tracked connection
states (NEW, ESTABLISHED, etc.) are different from the TCP connection establishment
states (SYN_SENT, SYN_RCVD, etc.).

Finally, when the last part of the three-way TCP connection establishment handshake, an ack
packet arrives from the server, the connection-tracking entry becomes:

tcp 6 43 1995 ESTABLISHED src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=22 [ASSURED]
src=154.32.43.44 dst=10.0.0.1 sport=22 dport=1506 use=1

The TCP state of the connection is altered to ESTABLISHED and the connection-tracking state
of the connection is modified to ASSURED. ASSURED connections are not dropped from the
state table when the connection is overloaded. Note that the remaining time value is increased
to a previously defined timeout value.

4. Verification of stateful firewalls

In case of a stateless firewall, inconsistencies and inefficiencies between rules can be
detected by means of static analysis of the ruleset. In case of a stateful firewall, the detection
appears to be harder, because the static analysis has to be performed in all possible states of
the firewall in order to be sure that the ruleset always remains consistent. In this section, we
show that this is indeed not the case, and it is sufficient to verify a single designated state for
inconsistencies in order to prove that the firewall’s rule set is consistent in all possible states.
For doing so, we must first introduce the notion of firewall state:

Definition (Stateful rules). A firewall rule is said to be stateful if it defines state
information, and is presented in the form <P , action, stateinfo>.

Definition (Firewall state) The state s of a firewall includes all the static firewall rules and
those dynamic (stateful) rules that have an associated entry in the connection-tracking
table.

As an example, let us consider the following rule set, where the first three rules are dynamic
(stateful) rules and the fourth rule is a static rule:

Rule 1: iptables –A OUTPUT –s 10.0.0.1 –dport 80 –m state – state NEW, ESTABLISHED –j ACCEPT
Rule 2: iptables –A OUTPUT –s 10.0.0.1 –dport 443 –m state – state NEW, ESTABLISHED –j ACCEPT
Rule 3: iptables –A OUTPUT –s 10.0.0.1 –dport 22 –m state – state NEW, ESTABLISHED –j ACCEPT
Rule 4: iptables –A OUTPUT –s 10.0.0.1 –dport 22 –j DROP

In addition, let us suppose that the following two entries have been created in the connection-
tracking table (as the result of processing some packets earlier):
1. tcp 6 54 SYN_SENT src=10.0.0.1 dst=154.32.43.44 sport=6322 dport=80 [UNREPLIED]
src=154.32.43.44 dst=10.0.0.1 sport=80 dport=6322 use=1
2. tcp 6 432 ESTABLISHED src=10.0.0.1 dst=154.32.43.44 sport=1506 dport=443
[ASSURED] src=154.32.43.44 dst=10.0.0.1 sport=443 dport=1506 use=1

As one can see, in this state, Rules 1 and 2 have associated entries in the connection-tracking
table, while Rule 3 has no such entry. This means that in this state, no packet can match Rule
3, and therefore, it can be ignored. At the same time, packets may match Rules 1 and 2, due
to the entries in the connection-tracking table, and packets may also match Rule 4, as it is a
static rule (i.e., independent of any states). For this reason, Rules 1, 2, and 4 must be
considered in this particular state. This means that, essentially, the state of the firewall can be
represented by those three rules.

It is natural to encode such a firewall state as a binary vector the length of which is equal to
the number k of the dynamic (stateful) rules in the rule-set. This is illustrated in Figure 1. It
trivially follows that the number of all possible firewall states is 2k.

Figure 1: Encoding the firewall state as a binary vector.

We can now introduce a partial ordering ≤ on the set S of all possble states:

Definition (Partial ordering of firewall states) Let s and s’ be two states of the same
firewall (i.e., two binary vectors of the same length). We have s ≤ s’ if all the dynamic rules
that are included in s are also included in s’. In other words, if the i-th element of the binary
vector corresponding to s is 1, then the i-th element of the binary vector corresponding to s’
is also 1.

The key idea of our work is that we show that whenever s ≤ s’, the number of inconsistencies
in s cannot be larger than the number of inconsistencies in s’. The next theorem states this for
the number of shadowings:

Theorem (Shadowing) Let s and s’ be two states of the same firewall such that s ≤ s’. The
number of shadowings in s cannot be larger then the number of shadowings in s’.

Proof: Without loss of generality, we can assume that the i-th stateful rule ri of the firewall
rule-set is included in s’, otherwise s’ contains no stateful rules, which means that s = s’, and
the statement of the theorem follows trivially. Let us denote by s” the state that we obtain
from s’ by removing rule ri.

Now, if there exists a (stateful or stateless) rule rj of the same firewall, such that either ri
shadows rj or rj shadows ri, then removing ri from s’ and obtaining s” surely decreases the
number of shadowings. Otherwise, if no rule shadows ri and no rule is shadowed by ri, then
removing ri from s’ and obtaining s” does not affect the number of shadowings.

As state s can be obtained from s’ by iteratively removing from s’ the dynamic rules that are
not contained in s, the statement of the theorem can be obtained by iteratively using the above
argument. ♣

Similar theorems can be stated and proven in the same way for the other types of
inconsistencies and inefficiencies (see [14] for details). This leads to the following main
theorem:

Theorem (Reduction to the stateless case) Let sall-1 be the state that contains all dynamic
rules of the rule set. If no inconsistencies and inefficiencies exist in state sall-1, then all states
are free from inconsistencies and inefficiencies, and hence, the firewall configuration is
correct.

Proof: Immediately follows from the fact that s ≤ sall-1 for any state s of the firewall. ♣

The consequence is that it is sufficient to verify the firewall in state sall-1 for inconsistencies,
and this can be done by using any static analysis tool. Note that for the sake of this static
analysis, the dynamic rules are converted to static rules by ignoring those parts of their
predicate that refer to some state information.

5. Implementation

In our implementation, we used the approach called FIREMAN [7], which applies static
analysis techniques to check misconfigurations, such as policy violations, inconsistencies and
inefficiencies in individual firewalls as well as in distributed firewalls using symbolic model
checking and Binary Decision Diagrams (BDD). Based on the concepts of FIREMAN, we
implemented the methodology of stateful verification described in the previous chapter as a
software tool. In the rest of this section, we briefly explain the operation of FIREMAN, and
hence, our tool.

Inspired by the successfully applied software implementations of the previous works [1,7] a
new application was implemented in C# that is capable of verifying a stateful firewall con-
figuration. First of all, this tool builds upon the methodology of the aforementioned works,
but uses its own Binary Decision Diagram class, to make calculations (union, intersection,
subset) on IP ranges as quickly as possible. Binary Decision Diagram is a data structure
which can represent Boolean functions. It is a rooted, acyclic, directed graph which
comprises several non-terminal (decision) nodes and terminal nodes with assigned value
either 1 (the Boolean function is true) or 0 (the Boolean function is false). When an IP range
is presented in BDD form, the number of non-terminal nodes is given by the length of the
corresponding netmask. Each decision node is one of the variables of the Boolean function.
Interested redears are referred to [7,14] for more details and examples.

In the following, the functioning of the application is presented: First and foremost, a valid
iptables rule file has to be opened. Right after it, the application parses the rules of the file
one-by-one, and tries to recognize the given parameters and their values. If a suggested
parameter is not set, then default values are used instead. An example is when one does not
specify explicitly the destination port in a corresponding rule. In this case, all packets
carrying one of the valid ports in the range [1, 65535] are accepted. When one rule is parsed
then it is compared against with the already stored preceding rules at once. This is the task of
the static analysis method that was previously mentioned. Naturally, the trivial translation of
stateful rules into stateless ones is done when the current rule has state information.
According to the definition of firewall state, there is no need to distinguish rules with
different state information (NEW, ESTABLISHED, RELATED, etc.,) so they are
handled uniformly. As it was explained previously, there is only one state sall-1, which
contains all the stateful (and stateless rules), that has to be checked. There are two internal
lists defined, where the parsed rules are put: AcceptList and DenyList, where

AcceptList contains rules with action ACCEPT and DenyList stores rules with action DENY.
Note that iptables defines two declining action values: REJECT and DROP. In fact each of
them refers to the internal representation of DENY. The pseudo-code in Table 1 demonstrates
the core of stateful verification.

StatefulVerfication(String firewallRuleFile){
struct Rule {

Boolean isStateful; Boolean isInBitVector; String protocol;
BDD sourceIP;
BDD destinationIP; Port sourcePort;
Port destiantionPort; String action;
String stateInformation; Integer numberOfRule;

}
Rule ruleSet[NUMBER_OF_RULES];
ruleset = MakeInternalRepresentation(firewallRuleFile);
forall (Rule rule in ruleset){

if (rule.isStateful == true) {
rule.isInBitVector = true;

}
}
RunStatelessAnalysis(ruleSet);

}

 Table 1: The pseudo code of stateful verification.

It is essential to put efforts on the demonstration of the application by verifying firewalls that
are used in practice. In order to satisfy these kind of requirements two firewalls at
BME are analyzed by means of the implemented tool. The machine that we used for the
verification was an IBM Thinkpad R40 notebook with Intel Pentium 4-M processor and 512
MB DDR RAM.

As Figure 2 shows, many inconsistencies and inefficiencies have been found among the
firewall rules. In details, there are around 70 firewall rules among which there are 155
shadowings, 14 generalizations, 15 correlations and 434 redundancies. The verification
time needed to discover all these inconsistencies and inefficiencies required less than 4sec.

6. Conclusion and future work

So far, formal methods have been considered only for the verification of stateless firewall. In
this paper, we proposed, for the first time, a formal verification method for stateful firewalls.
Our contributations are three-fold: First, we introduced a modelling technique for states, and
defined the notion of inconsistecy in case of the stateful environment. Second, we reduced
the problem of verifying a stateful firewall to the problem of verifying a stateless
firewall. More specifically, we proved that if the firewall configuration is free from
inconsistencies and inefficiencies in a designated state, then it is free from these anomalies in
all states. Third, we implemented our approach as a prototype stateful firewall verification
tool, and used it for verifying real firewalls used in practice. Our experiments show that the
tool is effective and efficient.

Figure 2. Screen shot of the prototype implementation.

Regarding future work, there are many possible improvements that are yet to be done. Our
approach could be extended to distributed firewalls, where multiple filters organized in some
topology must function together without anomalies. It would also be interesting to extend
this approach to the complex chain model of iptables. Finally, the implementation can be
extended to support other firewall products too, such as the Checkpoint FireWall-1 and
Cisco ASA.

Acknowledgments

The work presented in this paper has been partially supported by Ericsson through the HSN
Laboratory at the Budapest University of Technology and Economics. Apart from this,
Ericsson has no responsibility for the content of this paper.
The authors are thankful to Boldizsár Bencsáth for his help in understanding how iptables
works and for his useful comments on firewall management in practice.

References

[1] E. Al-Shaer and H. Hamed. „Design and Implementation of Firewall Policy Advisor Tools.”

Technical Report CTI-techrep0801, School of Computer Science Telecommunications and
Information Systems, DePaul University, August 2002.

[2] Ehab S. Al-Shaer and Hazem H. Hamed. Firewall policy advisor for anomaly discovery and rule
editing. In Integrated Network Management, pages 17–30, 2003.

[3] Ehab Al-Shaer and Hazem Hamed, Management and Translation of Filtering Security Polices,
IEEE ICC’03, May 2003.

[4] Ehab Al-Shaer and Hazem Hamed, Modeling and Management of Firewall Policies, IEEE
Transactions on Network and Service Management, Volume: 1-1, April 2004.

[5] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba and Masum Hasan, Conflict Classification and
Analysis of Distributed Firewall Policies, IEEE Journal on Selected Areas in Communications,
Issue: 10, Volume: 23, Pages: 2069 - 2084, October 2005.

[6] E. Lupu and M. Sloman. „Conflict Analysis for Management Policies.” In Proceedings of
IFIP/IEEE International Symposium on Integrated Network Management (IM’1997), May
1997.

[7] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. FIREMAN: A toolkit for firewall
modeling and analysis. In IEEE Symposium on Security and Privacy, pages 199-213, 2006.

[8] Florin Baboescu, George Varghese: Fast and scalable conflict detection for packet classifiers.
Computer Networks 42(6): 717-735 (2003).

[9] Venanzio Capretta, Bernard Stepien, Amy Felty, and Stan Matwin. Formal correctness of
conflict detection for firewalls. In FMSE '07: Proceedings of the 2007 ACM workshop on
Formal methods in security engineering, pages 22-30.

[10] D. Eppstein and S. Muthukrishnan. „Internet Packet Filter Management and Rectangle
Geometry.” Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2001.

[11] P. Eronen and J. Zitting. “An Expert System for Analyzing Firewall Rules.” Proceedings of the
6th Nordic Workshop on Secure IT-Systems (NordSec 2001), November 2001.

[12] B. Hari, S. Suri and G. Parulkar. „Detecting and Resolving Packet Filter Conflicts.”
Proceedings of IEEE INFOCOM’2000, March 2000.

[13] Mohamed G. Gouda and Alex X. Liu. A model of stateful firewalls and its properties. in
Proceedings of the IEEE International Conference on Dependable Systems and Networks,
Yokohama, Japan, June 2005.

[14] Gábor Pék, Security Verification of Stateful Firewalls, Student Scientific Conference (TDK),
2008.

[15] Oskar Andreasson, Iptables tutorial http://iptables-tutorial.frozentux.net/iptables-tutorial.html
[16] A. Liu, E. Torng, and C. Meiners. Firewall Compressor: An algorithm for minimizing firewall

policies; in Proceedings of the 27th Annual IEEE Conference on Computer Communications
2008.

