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IT security architectures that use cryptographic elements sometimes fail, but it is rarely 
cryptography to blame. The reason is more often the use of cryptography in an 
inappropriate way, or the use of algorithms that do not really qualify as cryptographic. 
High quality cryptography is in fact the strongest link in the chain, and there are good 
reasons for that.  
 
Introduction 
 
Cryptography is an area of great importance within the field of IT security. It provides 
algorithmic methods to protect information from unauthorized disclosure and 
manipulation during storage and communications. IT security would be cumbersome and 
much more expensive without cryptography, because if cryptographic mechanisms would 
not be available, then all storage and communication services needed to be protected by 
physical measures. In some cases, for instance, in case of wireless communication 
systems, protection would even be impossible without cryptography, as one cannot really 
control the access to radio channels by physical means.    
 
While cryptography is important, it must be clear that it is not a magic wand that solves 
all the security problems in IT systems. Indeed, within the IT security community, there 
is a folkloric saying often attributed to Bruce Schneier, a well-known security expert: “If 
you think cryptography will solve your problem, then you don’t understand 
cryptography… and you don’t understand your problem.”  There are important areas, for 
example, operating systems security, where cryptography is not so helpful. Although, it is 
used here and there to solve particular issues, such as hashing passwords and encrypting 
files, it is not so well-suited to handle control flow security problems that are in the core 
of operating systems security.  
 
Moreover, even when cryptography is the appropriate approach, a cryptographic 
algorithm alone is rarely sufficient to solve the entire problem at hand. In other words, 
cryptographic algorithms are not used in isolation, but instead, they are usually part of a 
more complex system such as a communication protocol, an authorization scheme, or an 
identity management infrastructure. Therefore, talking about cryptography without 
considering the environment in which it is used can be interesting from an academic point 
of view, but it is not sufficient to understand and solve practical IT security problems. We 
prefer, and in this article, follow a practice oriented approach: we discuss how 
cryptography is used in practice and why systems using cryptography sometimes fail. 
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Another folkloric proverb says that security is similar to a chain: it breaks at the weakest 
link. It turns out that cryptography is rarely the weakest link, and we believe that there are 
good reasons for this, which we discuss at the end of this article. Security systems 
involving cryptographic building blocks usually fail due to bad design and human errors. 
Even when the failure is attributed to the cryptographic building block, the real problem 
often stems from one or both of the following two mistakes:  

(i) the “cryptographic” algorithm was designed by non-experts and/or it did not 
go through a thorough analysis, therefore, it only looked like a real 
cryptographic algorithm, but in reality, it is a crappy design, doomed to fail, 
and it should not be called a cryptographic algorithm in the first place;  

(ii) the cryptographic algorithm is strong enough, but it is used in an inappropriate 
application environment or in an inappropriate way.  

It is not really cryptography to blame in any of these cases. 
 
Of course, mistakes can be made by cryptographers too, and there are examples for 
breaking cryptographic algorithms (e.g., collision attacks against the MD5 hash function). 
The point is that this happens far less frequently than the other two types of failures. 
Therefore, in the sequel, we focus on (i) and (ii), discussing some examples for those 
kinds of failures in real systems. At the end of the article, we explain why we believe that 
good quality cryptography is in fact the strongest link in the chain.   
 
Examples for bad cryptography 
 
There are plenty of examples in real life for the security failure of a system due to the use 
of low quality “cryptographic” algorithms.  A prominent recent example is the failure of 
Mifare Classic chip cards, used extensively in the field of automated fare collection, due 
to the weaknesses in the Crypto-1 stream cipher [1].  
 
In many cases, including that of Crypto-1, the “cryptographic” algorithm is a 
homebrewed design and it is kept in secret, such that it cannot be thoroughly analyzed by 
the cryptographic community. This “security by obscurity” approach, however, usually 
leads to failure. First of all, in most of the cases, the algorithm eventually becomes 
disclosed either by means of reverse engineering or by some unintended release of design 
documents. Moreover, once they have been disclosed, homebrewed “cryptographic” 
algorithms are often broken, mostly due to the inappropriate trade-off between cost, 
performance, and security made in the design. While design flaws could be discovered by 
independent analysis, due to the requirement of keeping the algorithm in secret, 
homebrewed “cryptographic” algorithms are not analyzed by independent experts. The 
designers, on the other hand, are biased towards low cost and high performance at the 
expense of security, due to market pressure and strong competition.   
 
In some other cases, the “cryptographic” algorithm is simply designed by someone with 
little knowledge of the field of cryptography; it is made available for free, and then used 
by others, again with little knowledge of cryptography. As an example for this case, we 
present below a “cryptographic” algorithm designed for the encryption of the values of 
the parameters passed in URLs of links; this is intended for the prevention of disclosing 



information about the internal structure of a protected web site.  This “cryptographic” 
algorithm is part of the secureURL.php package [2]. We analyzed this package in the 
context of a penetration testing work that we conducted for request by a client. The 
client’s web site used the secureURL.php package for hiding URL parameters, and what 
is more, the entire design of the site’s defense architecture heavily depended on the 
assumption that URL parameters were properly hidden. Unfortunately, in this case, the 
use of bad cryptography created a false impression of security for our client: We broke 
the “cryptographic” algorithm of secureURL.php, and this also allowed us to successfully 
break into the client’s system (with some additional work, of course). We reported the 
flaw in the secureURL.php package and provided a detailed description of the analysis in 
[3]. 
 
Decryption attack by known cleartext-ciphertext pairs 

 
When the secureURL.php package is used, URL parameters are encrypted and optionally 
protected by a checksum, such that an attacker cannot observe the URL parameters and 
fabricate modified parameters. The process of parameter encryption in the 
secureURL.php package is illustrated in Figures 1 and 2.  

 
The encryption mechanism used for encoding the URL parameters is based on XOR-ing 
the plaintext parameter string with the MD5 digest of a user defined secret key repeated 
as many times as needed to mask the entire plaintext parameter string. The corresponding 
lines from function crypt($text,$key) of secureURL.php are the following: 
 
$key = md5($key); 
... 
($crypt .= chr(ord($text[$i]) ^ ord($key[$j])); 
 
The problem with this “encryption” algorithm is that if an attacker can guess a plaintext 
parameter string, and observe its encrypted version, then he can compute the MD5 digest 
of the key which is used by the encryption operation. The calculation is done as follows: 
 
$key[$i]= chr(ord($crypt[$i])) ^ chr(ord($text[$i]); 
 
As the MD5 digest $key is used to “encrypt” the parameters in every URL of the site, 
once it is obtained, all other “encrypted” parameter strings can be easily decrypted. Note 
that the user defined secret key is not revealed, but it is not needed: only its MD5 digest 
$key is used to mask the parameter strings.  
 
For a successful attack, the attacker needs to know at least one plaintext parameter string 
and its “encrypted” version. Encrypted parameter strings can be easily obtained as they 
can be directly observed in URLs. The attacker can obtain plaintext parameter strings by 
multiple ways. First of all, a page might contain some parameter names and values in 
plaintext accidentally, e.g., debug messages, programmer’s notes, log files, etc. It is also 
possible that the attacker can simply guess some parameters, e.g., this should not be a 
hard task for a search function where a large part of the parameter string would be based 



on user input. It is also possible that the web site contains known modules, such as open 
source web components. In this case, the attacker can examine the original program to 
reveal information about parameter strings. In any case, the attacker can easily check if 
the information found is correct. 
 
Attacking the integrity protection algorithm 

 
Integrity protection of URL parameter strings is based on a keyed CRC-32 function. A 
checksum value is computed from the “encrypted” parameter string and the same MD5 
digest of the secret key which is used for “encrypting” the parameter string, and it is 
appended to the end of the “encrypted” parameter string before base64 encoding. The 
checksum is verified by the web server before decrypting the “encrypted” parameter 
string, in order to detect any manipulations by an attacker. The corresponding PHP code 
for the keyed CRC-32 calculation in function hash($text) is the following: 
 
return dechex(crc32(md5($text) . md5($this->key))); 
 
It follows, that if the MD5 digest of the secret key is known to the attacker, then he can 
compute a proper checksum for any fabricated parameter string. And as we have shown 
above, an attacker can obtain the MD5 digest of the secret key, therefore the attacker can 
easily fabricate “encrypted” parameter strings with a proper integrity checksum. 
 
Extensions 

 
As we have seen, the “encryption” algorithm uses only the MD5 digest of the secret key, 
which is 32 characters long. Therefore, for recovering the whole MD5 digest, the attacker 
needs a plaintext parameter string whose length is at least 32 characters, and its 
“encrypted” version. If the attacker can obtain only a shorter plaintext parameter string, 
then he can still try to figure out the missing characters of the MD5 digest of the secret 
key; here are some possible methods: 
 

• The attacker randomly guesses the missing bits of the digest, calculates the 
integrity protection checksum, and compares it to the observed checksum value. If 
they do not match, then the guess for the missing bits was wrong, and the attacker 
repeats the procedure with a new guess.  

• In another method, the attacker guesses the missing bits of the digest, creates an 
encrypted and integrity protected parameter string, and passes it to the server. If 
the server denies responding, then the guess was probably wrong. 

• If there is no integrity protection, then the attacker guesses the missing bits of the 
digest, generates a falsified parameter string, sends it to the server, and checks the 
response. If the result of the query is not what is expected, then the guess of the 
bits was wrong. 

 
Note, that the individual characters of the MD5 digest contain only 4 bit of information 
per character. In other words, every single character represents only a nibble (4 bits) of 



the hash. This makes brute force attacks easier and it makes other types of attacks 
possible as well. 
 

How to fix the problems of secureURL.php? 

 
As we have seen, there are multiple problems with the encryption and integrity protection 
algorithms of secureURL.php, and we have not even mentioned some additional 
problems, such as the linearity of the CRC function with respect to the XOR encryption, 
which makes malicious modifications of an existing encrypted parameter string possible. 
Fixing the scheme is not straightforward, but some hints can be easily given: For the 
encryption algorithm, the usage of a state-of-the-art block cipher (e.g. AES-128) would 
help against the attack presented here, however, it would create longer encrypted URLs 
due to the fixed block size. For calculating the integrity protection checksum, CRC-32 
should be avoided as it is not cryptographically strong. Instead, HMAC (with a strong 
hash function such as SHA-256) or some similar message authentication function should 
be used. Careful design is needed also for key handling, e.g., different keys should be 
derived and used for encryption and integrity protection. 
 
Examples for good cryptography used in bad ways 
 
Using a strong cryptographic algorithm as part of a more complex system does not by 
itself guarantee that the system will be secure: good cryptography can be used in bad 
ways. An entire family of examples for this is provided by the field of key establishment 
protocols. The objective of key establishment protocols is to setup a shared secret key 
between two (or more) parties in such a way that only the intended parties (and perhaps 
some other trusted party) learn the value of the key and they are convinced that the key is 
fresh. Such protocols typically use cryptographic building blocks to ensure the secrecy 
and the freshness of the established key. Many protocols were proposed in the 80’s and 
90’s in the academic literature (see for example [4] for a comprehensive discussion), 
however, most of them turned out to be flawed some time after their publication. And the 
flaws were typically protocol flaws, not any weakness in the underlying cryptographic 
algorithm used in the protocol. Indeed, when analyzing key establishment protocols, 
researchers typically make the assumption that the underlying cryptographic building 
blocks are perfect, and they view them as black boxes. 
 
While key establishment protocols provide a reach set of examples for how good 
cryptography can be used in bad ways, this set is biased towards academic examples, 
with few instances used in real systems in practice. This does not mean that practical 
systems lack good examples of this kind. Perhaps the most well-known case where an 
entire real system failed due to using good cryptography in bad ways is WEP, the first 
security architecture for WiFi networks. In fact, we use WEP as the example of how 
insecure systems can be built from relatively strong elements in our university lectures on 
network security at the Budapest University of Technology and Economics (lecture slides 
are available at www.crysys.hu). While the RC4 stream cipher used in WEP has known 
weaknesses, it can be used in a proper way, but the designers of WEP did not do so. The 
short IV length, and even more, the use of a stream cipher within a challenge-response 



authentication protocol and for encrypting a CRC value for providing message integrity 
protection ruins the security of the entire system; and again, it is not really RC4 to blame, 
the real problem is in the way it is used in the WEP protocols (see [5] for a more detailed 
description of these problems). 
 
Yet another example is the padding oracle attack on block encryption in CBC mode 
discovered by Serge Vaudenay and his colleagues [6]. One can view CBC mode as a low 
level protocol for encrypting large messages with a block cipher (which has a short and 
fixed input size of typically 16 bytes). Before encrypting a message in CBC mode, it has 
to be padded such that its length becomes a multiple of the block cipher’s input size. 
When decrypting, this padding is removed at the receiver side, as it is not really part of 
the message; it is just added for technical reasons in order for CBC encryption to work. In 
many practical systems that use CBC mode, after decrypting an encrypted message, the 
receiver checks the format of the padding: if it is correct, then it is removed and the 
processing of the message is continued; otherwise some error is signaled. It turns out that 
the leakage of this one bit of information (i.e., whether the padding is correct or not) can 
be exploited to decrypt an entire encrypted message by repeatedly feeding the receiver 
with carefully constructed ciphertexts and observing the receiver’s reaction (see [6] for 
details). Practical systems that use CBC mode and signal the result of padding 
verification include the SSL and the IPsec protocols, which are widely used in real 
installations. As with the other examples in this section, the flaw does not stem from the 
underlying block cipher, but rather from the way it is used in practice in CBC mode. 
 
Why good cryptography is the strongest link? 
 
In the previous sections, we argued that security failures mainly happen due to either the 
use of badly designed “cryptographic” algorithms, or the inappropriate use of strong 
cryptographic algorithms. Breaking a strong cryptographic algorithm happens only very 
rarely. In our view, the main reason for this is that, by today, cryptography has matured 
as a scientific field with very strong mathematical foundations. The cryptographic 
community has worked on different mathematical models in which various security 
properties can be precisely defined, and cryptographic algorithms can be analyzed in a 
rigorous manner. New cryptographic algorithms cannot be published today at prominent 
conferences of the cryptography community without a proof of security in some accepted 
model.  
 
The design of more complex systems and security architectures lacks this sort of strong 
foundations. Although, some work has been done to construct formal models for 
encryption modes [7] and key establishment protocols [8][9], they are less developed and 
not routinely used. For larger systems, such as entire communication protocols or IT 
architectures, models and analysis techniques are even more in an under-developed state: 
existing models and tools are usually unable to handle the complexity of a practical 
system. We see this as a great challenge for the future in security research. 
 
Another key point is that the cryptographic algorithms that are standardized and used on a 
wide scale undergo a very thorough selection process where competing proposals are 



evaluated by independent experts with respect to different requirements. Such a thorough 
and open analysis before deployment is totally missing in case of larger systems and 
mostly in case of communication protocols too. An open source approach would mitigate 
the problem, but it contradicts the business policies of many companies.   
 
To summarize, the strong foundations and the careful selection process make 
cryptography the strongest link in the chain. This should not come as a surprise, though: 
it is well-known for centuries that a long lasting building should not be built on sand but 
rather on a rock.   
 
Perhaps one remaining question is how to help the proper usage of strong cryptographic 
algorithms in protocols and larger systems. Well, first of all, protocols and security 
architectures of IT systems should be engineered by security experts, as this is the case 
with long lasting buildings. Experts have background and experience, they know better 
the state of the art, and therefore, they can at least avoid known pitfalls with larger 
probability. Of course, anyone can become an expert in security engineering; however, 
similar to any other profession, that requires hard work and a humble attitude to 
approaching problems. A good introduction to security engineering is given by Ross 
Anderson in his book [10]; we recommend it as a starting point for those seriously 
interested in the subject. 
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Figure 1: High level overview of the parameter string encryption in the secureURL.php package 

 
 
 

 
 

Figure 2: Details of the “encryption” algorithm of the secureURL.php package 
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