
Duqu: Analysis, Detection, and Lessons Learned

Boldizsár Bencsáth
CrySyS Lab, BME

boldi@crysys.hu

Gábor Pék
CrySyS Lab, BME
pek@crysys.hu

Levente Buttyán
CrySyS Lab, BME

buttyan@crysys.hu

Márk Félegyházi
CrySyS Lab, BME

mfelegyhazi@crysys.hu

ABSTRACT
In September 2011, a European company sought our help
to investigate a security incident that happened in their IT
system. During the investigation, we discovered a new mal-
ware that was unknown to all mainstream anti-virus prod-
ucts, however, it showed striking similarities to the infamous
Stuxnet worm. We named the new malware Duqu, and we
carried out its first analysis. Our findings led to the hypoth-
esis that Duqu was probably created by the same people
who developed Stuxnet, but with a different purpose: un-
like Stuxnet whose mission was to attack industrial equip-
ment, Duqu is an information stealer rootkit. Nevertheless,
both pieces of malware have a modular structure, and they
can be re-configured remotely from a Command and Control
server to include virtually any kind of functionality. In this
paper, we present an abridged version of our initial Duqu
analysis, which is available in a longer format as a tech-
nical report. We also describe the Duqu detector toolkit,
a set of heuristic tools that we developed to detect Duqu
and its variants. Finally, we discuss a number of issues that
we learned, observed, or identified during our Duqu analy-
sis project concerning the problems of preventing, detecting,
and handling targeted malware attacks; we believe that solv-
ing these issues represents a great challenge to the system
security community.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and protection—in-
vasive software

General Terms
Design, Experimentation, Security

Keywords
targeted attacks, advanced persistent threat, malware anal-
ysis, malware detection, incident handling, forensics, Duqu,
Stuxnet, Tilded platform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec’12, April 10, 2012, Bern, Switzerland.
Copyright 2012 ACM 978-1-4503-1165-6/12/04 ...$10.00.

1. INTRODUCTION
In September 2011, a company from Europe approached

us to help them in the investigation of a security incident
that occurred in their IT system. The NDA that we signed
with the company does not allow us to reveal more infor-
mation about the company itself and the details of the in-
cident. However, the company allowed us to share informa-
tion about the root cause behind the incident, which hap-
pens to be a malware that was previously unknown. When
we discovered this malware during the investigation of the
incident, we gave it the name Duqu, because it has an in-
fostealer component that creates files in the infected system
with filenames starting with the string “∼DQ”.

Since our discovery, Duqu has become widely known and
was covered by the media, mainly due to its striking simi-
larity to the infamous Stuxnet worm in terms of design phi-
losophy, internal structure and mechanisms, implementation
details, and the estimated amount of effort needed to create
it. However, no paper has discussed this malware in the sci-
entific community so far. Yet, we believe it is important to
discuss Duqu within the scientific community too, because
the success of malware codes like Duqu and Stuxnet is due to
the inefficiency of our current defense mechanisms. Design-
ing efficient security mechanisms against targeted attacks
requires a joint effort of researchers, industry and policy-
makers.

Our main contribution related to Duqu is threefold:

1. Discovery: First of all, we discovered and named Duqu,
and we performed its first analysis. The main out-
come of our analysis was that Duqu is extremely sim-
ilar to the Stuxnet worm in its design and implemen-
tation, but there are also obvious differences between
them stemming from their different objectives. These
findings have later been confirmed by others, and led
many to believe that Duqu was probably created by
the same people who developed Stuxnet, but with a
different purpose: unlike Stuxnet that infected PLCs
and maliciously controlled uranium centrifuges, Duqu
is an information stealer rootkit targeting MS Win-
dows based PCs. We dumped our analysis results in
a confidential report that we shared only with a small
set of mainstream anti-virus vendors and security ex-
perts. We also shared with them the Duqu samples
that we had, such that they can repeat and extend
our analysis. In a very short amount of time, Syman-
tec confirmed our findings, extended our analysis, and
published the first public Duqu report [4] on October
18, 2011. A reduced and anonymized version of our

initial analysis appeared in the Symantec report as an
appendix. A few days later our lab has been identified
as the source of the anonymized appendix1 based on
some cryptographic hash values computed from some
Duqu components and placed on the personal blog site
of one of us for monitoring purposes2.

2. Dropper: Once the Duqu samples have been shared
among the anti-virus vendors, they updated their prod-
ucts such that they could detect Duqu. This was an
important step, but a key element was still missing:
no one knew how Duqu infects the first computer in
a network. Our second main contribution was that
we identified the dropper of Duqu, which was an MS
Word document with a zero-day kernel exploit in it. To
prove that it is a zero-day exploit, we opened the drop-
per file on a fully patched system, and observed how
Duqu installs itself. However, the difficulty was that
the installation does not start immediately, only if the
computer is idle for 10 minutes and some other condi-
tions hold. It took us some time to find all these con-
ditions. We immediately notified Symantec and Mi-
crosoft about our findings including the conditions for
successful installation. We also helped Symantec to re-
produce the installation of Duqu from the dropper in
their analysis environment, such that they can confirm
our results. Symantec then produced an anonymized
dropper file with a proof-of-concept exploit code, and
that was shared with Microsoft and others such that
they can take the necessary steps for fixing the prob-
lem. In effect, the exploit took advantage of an un-
known bug in the handling of embedded fonts in the
Windows kernel; this bug was fixed by Microsoft in
December 2011.

3. Detection: After the analysis it was clear to us that
Duqu generated anomalies in the infected systems that
could have been rather easy to spot. Yet, Duqu was
not detected by any anti-virus product at the time.
Based on the lessons learnt, we developed a Duqu de-
tector toolkit and made it available under an open
source license for free3. Our toolkit consists of sim-
ple heuristic tools, which are individual programs that
can be run on a system to look for a certain type of
anomaly, such as PNF files without corresponding INF
files, and drivers with too large entropy (which sug-
gests that the file is obfuscated). The open source
license allows users to check the precise operation of
the detector and to create their own executables with
their trusted compilers. This allows for the usage of
our Duqu detector toolkit in critical infrastructures,
where commercial anti-virus products may not be used
due to lack of trust in their vendors. As a heuristic
tool, our detector may generate false positive alarms,
but we believe that in critical infrastructures, it is af-
fordable to invest some time in filtering false positives,
and this additional effort is preferred to missing a real
attack. The positive side is that our heuristic tools

1http://www.symantec.com/connect/blogs/
duqu-status-update-1
2We placed these hashes on the blog site to see if there is
anybody looking for them.
3http://www.crysys.hu/duqudetector.html

may detect as yet unknown variants of Duqu, or even
Stuxnet, and they may also detect remains of a past
infection. Our Duqu detector has been downloaded
from more than 12000 distinct IP addresses from all
around the world.

In this paper, we give a brief overview of our first Duqu
analysis results, focusing on the evidence that we found on
the similarity between Duqu and Stuxnet. More details can
be found in our full technical report [1]. In addition, we de-
scribe our Duqu detector toolkit. Finally, we discuss some
issues that we observed or identified during the unfolding
of the Duqu story concerning the problems of preventing,
detecting, and handling targeted malware attacks. We hope
that these issues will generate discussion within the system
security research community, and open new research direc-
tions.

2. DUQU ANALYSIS
In order to investigate the reason of the incident at the

company that requested our help, and to be able to fix the
system such that the same type of incident cannot happen
again, we were allowed to access the hard drive of an in-
fected computer. We produced a virtualized copy of the
affected computer, which allowed us to revert the machine
to a former state at any point during the analysis.

We hypothesized from the beginning that the malware
loads a kernel driver, so the first task was to find that driver.
The driver called cmi4432.sys became suspicious, but it was
inactive on the particular computer we investigated, and it
was digitally signed. Therefore, we performed a systematic
search: we deleted groups of kernel drivers until we found
that the malware was no more active, then refined the search
iteratively to pinpoint the driver that was part of the mal-
ware. This led to the identification of another driver called
jminet7.sys. After that, we recognized that cmi4432.sys is
indeed connected to the threat, and we have already known
that cmi4432.sys was related to some suspicious PNF files
that did not have any corresponding INF files installed on
the system.

Finally, we uncovered three main groups of malware com-
ponents: a standalone keylogger, a group of objects related
to jminet7.sys, and another group of objects related to
cmi4432.sys. The keylogger is a standalone executable that
was found on an infected computer. It contains an inter-
nal encrypted DLL, which provides the keylogging functions,
whereas the main executable injects the DLL and controls
the logging process. The jminet7 group of objects work
as follows: In the registry, a service is defined that loads
the jminet7.sys driver during the Windows bootup pro-
cess. This kernel driver then loads configuration data from
itself and from the registry, and injects code from a DLL
called netp191.pnf into a system process. Finally, some
configuration data is stored in an encrypted configuration
file called netp192.pnf. The cmi4432 group of objects es-
sentially exhibit the same kind of behavior, but they use the
files cmi4432.pnf and cmi4464.pnf.

This sort of behavior was very similar to the operation of
Stuxnet. Our suspicion that Duqu and Stuxnet are related
grew rapidly when we discovered that Duqu also injects code
into the lsass.exe process, it uses non-existent virtual files,
and it uses the same hooks from ntdll.dll as Stuxnet. In
addition, as we said before, the driver cmi4432.sys had a

valid digital signature on it. The corresponding certificate
belonged to a Taiwanese company that did not seem to be
the author of the driver, so we suspected that the signa-
ture was generated with a compromised private key. The
only known case at that time where malicious kernel drivers
were signed with possibly compromised keys was the case of
Stuxnet, and the compromised keys belonged to Taiwanese
firms in that case too.

Given the strong evidence for a highly sophisticated mal-
ware, we decided to carry out a deeper analysis of Duqu,
including mainly static binary analysis, trying to see if it is
really related to Stuxnet. The potential connection between
the two incidents urged us to reveal Duqu’s existence to the
security community as soon as possible. Thus, we set 10
days as a hard deadline for ourselves to finish the analysis;
we did not aim at completeness, rather we wanted to under-
stand as much as possible within 10 days and then release
our analysis report. Below, we summarize the key findings
of our analysis. Due to space limitations, we keep the dis-
cussion brief, and we refer the interested reader for more
details to our technical report [1].
Decryption keys and magic numbers: During the ini-
tialization of Duqu, three decryption operations are per-
formed, exactly as in Stuxnet. In case of Duqu, the compiled-
in configuration is decrypted with a fixed decryption routine
and it does not use any specific key, the variable configura-
tion in the registry is decrypted with the key 0xAE240682

loaded from the compiled-in configuration, and the PNF file
netp191.pnf is decrypted with the key 0xAE240682 loaded
from the registry. The situation is the same for Stuxnet, the
only difference is that the key loaded from the registry is dif-
ferent, and the decryption routines in Stuxnet are slightly
different as well. In addition, in both cases, further configu-
ration parameters are stored in a PNF file (in case of Duqu,
this is netp192.pnf for the jminet7 variant and cmi4464.pnf

for the cmi4432 variant), which starts with the magic num-
ber 0xAE790509. The same magic is used in Stuxnet.
Injection targets: The injection target selection of Duqu
and Stuxnet are very similar. Both Duqu and Stuxnet first
check for known anti-virus products. Their checklists are
essentially the same (even ordered in the same way), how-
ever, Rising Antivirus appears as an additional element in
the list of Duqu. The injection target is then selected from a
list of system processes including svchost.exe, lsass.exe,
and winlogon.exe. The same list is used by Stuxnet. In
addition, after injecting the malicious DLL payload in the
target process, export 1 of the DLL is called in both cases.
Exported functions: The DLL in netp191.pnf contains
8 exports, while that in cmi4432.pnf has only 6 exports. In
case of Stuxnet, the number of exports was 32; we suspect
that the reason for this difference is the additional PLC func-
tionality in Stuxnet, which is completely missing in Duqu.
Nevertheless, the exports in Duqu show strong similarities
to the non-PLC related exports in Stuxnet. For instance, ex-
ports 1 and 8 of netp191.pnf of Duqu are essentially the
same as exports 1 and 32 of Stuxnet’s oam7a.pnf. In both
cases, these exports are related to RPC communications and
they differ only in a few bits.
Import preparation by cheksums: Both Duqu and Stux-
net use the trick that some imports are prepared by looking
up checksums in particular DLLs and comparing the results
instead of directly naming the specific function to be called.
The checksum calculation, however, seems to be different in

Duqu and Stuxnet.
Hooks: The hook functions work in the exact same way in
Duqu and in Stuxnet. In both cases, they use non-existent
virtual files for libraries loaded from modules. Both Stuxnet
and Duqu use the same 8 hooks in ntdll.dll during the
injection process. Hooks used by rootkits are usually similar,
however, the exact list of the hooks is specific to a given
rootkit family and can serve as a fingerprint.
Communication module: Duqu has a backdoor covert
channel control communication module that is used to send
information to and receive commands from a remote Com-
mand and Control (C&C) center. In our case, the remote
C&C server was located at the address 206.183.111.97, but
later evidence shows that other instances used different servers.
The communication protocol uses both HTTP port 80 and
HTTPS port 443. The communication through port 443 is
encrypted. The communication through port 80 starts with
a valid HTTP request, followed by the transmission of (pos-
sibly encrypted) binary data obfuscated as jpeg images.
Keylogger module: Unlike Stuxnet, Duqu has a keylogger
component that steals information from the infected system.
The keylogger does not only log keystrokes, but it also reg-
ularly saves screenshots and packs other types of informa-
tion. It stores data in the %TEMP% directory of the computer
in a compressed format. The executable of the keylogger
contains an embedded jpeg file. The jpeg image is not com-
plete, the readable text shows “Interacting Galaxy System
NGC 6745”. This refers to a picture, taken from NASA,
showing two colliding galaxies. Within the jpeg file, after
the partial image, an encrypted DLL can be found which
conatins the main keylogger functions.

2.1 Follow-up activities
Multiple security vendors pursued technical analysis of

Duqu after our initial work. The most detailed results are
from Symantec and Kaspersky. Their discoveries and con-
clusions are in-line with our results and observations and
deepen the knowledge about the Duqu threat. Similarities
to Stuxnet are common features of these analyses.

Multiple other Duqu infections were identified around the
world, in a total number around 20, most of them in Europe
and Middle East. We had no access to new samples, the in-
formation on this is based on the publicly available reports
of the anti-virus industry. Based on these reports, we can
say that Duqu is like a Lego-kit, and so is Stuxnet. Both
of them are based on small components assembled together,
they exist in several different versions with slight modifica-
tions, and they are created to perform their activity in a fast
and efficient way. They are created to avoid identification us-
ing individual modifications and very careful error process-
ing. This type of thinking about the threat was reinforced
by Kaspersky in their recent report [2], where they reveal
details about the discovery of previously unknown pieces
of malware components related to both Duqu and Stuxnet.
Consequently, Kaspersky introduced the name Tilded plat-
form to refer to Stuxnet and Duqu as members of the same
malware family. Although some still question that Duqu is
made by the same authors as Stuxnet, each new evidence
seems to support the hypothesis on their strong relation.

The zero-day exploit within the Duqu dropper was con-
firmed by Symantec and Microsoft in the last days of Oc-
tober 2011, and fixed by a patch in early December by Mi-
crosoft. Anti-virus vendors now include detections on parts

of the Duqu threat, and even generic detections on the ex-
ploit used by our known Duqu dropper, currently identified
as CVE-2011-3402.

Speculations on the authors/origin of Duqu and Stuxnet
are of high interest, but no sound evidence was found on
this topic. There are still many questions unanswered on
the threat and most likely, discussions, findings and follow-
ups will be announced in the future.

3. DUQU DETECTOR TOOLKIT
Duqu is a sophisticated malware that has avoided detec-

tion for a period of time that shocked malware analysts.
The exact start of the Duqu operation is still unsure today,
but the stealthy time period of the malware spans several
months, maybe years. The authors achieved this robustness
with rigorous quality control, the use of advanced obfusca-
tion techniques and thorough cleaning of activity traces.

Yet, thorough investigations uncovered several points where
the malware authors could not fully cover their traces. We
collected our observations and developed a set of heuristic
tools to detect Duqu and, with a high chance, unknown vari-
ants of the Tilded platform. Given the potential impact of
false negatives, our tools aim at completeness rather than
precision and they require a careful investigation of results
by security experts.

At the time of this writing, we provide six tools to heuristi-
cally detect Duqu variants and our tools can be broadly cat-
egorized into three areas: detecting file existence anomalies
(FindDuquSys, FindDuquTmp, FindPNFnoINF), detecting
properties of files and registry entries (CalcPNFEntropy,
FindDuquReg) and analyzing code injection into running
processes (GetProcMem). The output of these tools are
stored in a log file, where suspicious files, memory regions,
registry entries are indicated together with their correspond-
ing hashes. Note that while some of these tools are rather
simple and would be easy to defeat by changing the mal-
ware, they can still be used to detect existing infections. In
addition, some of these tools are general and defeating them
would require substantial change in the malware.

1. FindDuquSys. This tool recursively tries to find the
loader executable component, the .sys kernel driver
file of Duqu. It works similarly to signature based
anti virus detectors and uses binary signature match-
ing on all driver files in predefined directories, such as
system32 drivers and System Volume Information di-
rectory4. The signature components were selected in
a way that possibly modified versions of Duqu might
be detected as well. It is not impossible, however, that
our tool can detect these signatures in legitimate files,
so if any string is detected, it is just an indication for
the need of detailed manual analysis of the particular
file. Care should be taken that running the program
might need elevated privileges to successfully test all
.sys files.

2. FindDuquTmp. The Duqu malware got its name after
the usage of temporary files starting with ∼DQ. In fact
the detection tool seeks multiple types of temporary
files used in Duqu:

4This extension was introduced to be able to search deleted
files as well.

• The existence of ∼DN1.tmp shows that the keylog-
ger/infostealer component might be installed on
the computer. Our tool checks files recursively
in predefined temporary directories, i.e., Temp di-
rectories of all the users and the Windows Temp

directory.

• ∼DQ* files might be related to the keylogger/info-
stealer log files. Some parts of the files are checked
against Duqu’s magics.

• ∼DF* are compressed files created by a yet un-
known part of Duqu and contain information gath-
ered at the target computer. Our tool checks
those files if they begin with a modified bzip magic,
which shows that the temporary file is likely re-
lated to Duqu.

3. FindPNFnoINF . The PNF files installed by Duqu do
not have the corresponding INF files. The tool checks
all PNF files in Windows INF directory (located at
%WINDIR%\inf), and indicates if some file does not have
a related file with INF extension. Improper uninstal-
lation of drivers can also cause such anomaly, so this
does not necessarily signal the existence of Duqu. Ex-
perts should carefully check the results of the tool for
false positives.

4. CalcPNFEntropy . This tool tries to find suspicious
PNF files both in the Windows installation and Sys-
tem Volume Information directories. Both Duqu and
Stuxnet put components in encrypted form into folder
%WINDIR%\inf with a PNF extension. Encrypted and
compressed files generally have a distinct character-
istic: their entropy calculated over the binary file is
larger then those of other standard binary files. This
tool calculates entropy of all files in %WINDIR%\inf.
Files with entropy above 0.6 are marked suspicious
(calibrated by real-life Duqu samples with a typical
entropy around 0.9).

5. FindDuquReg . This tool looks up the registry recur-
sively from a given key node to identify suspicious en-
tries with high entropy. In this regards, it works sim-
ilarly to CalcPNFEntropy, but due to the very small
size of binary data in registry entropy calculation is
difficult. Therefore, instead of calculating entropy over
bytes, we use four consecutive bits as one symbol using
the same method as in CalcPNFEntropy.

6. GetProcMem. This tool builds upon the fact that
Duqu injects itself into running processes such as sv-

chost.exe, lsass.exe and creates a view of sections
with read/write/execute rights. The technique used
by the malware is a well-known code injection method,
as it starts itself from a memory region that it previ-
ously wrote. The problem with detecting injection into
running processes is that it may happen in case of be-
nign software as well, therefore, this tool may generate
false alarms. To limit the number of false positives, we
only consider specific processes where Duqu typically
injects itself.

We tested our toolkit on virtual machines infected by our
Duqu sample and an available Stuxnet sample (Stuxnet.A).
All the six tools in the toolkit generated alarms for Duqu

infected machines. For the Stuxnet infected machines, nat-
urally, the Duqu signature scanner and the temporary file
detectors did not signal any problems, however the remain-
ing four tools raised alarms. In all cases, we had a small
number of false positive alarms, e.g., we found a few inno-
cent PNF files without a corresponding INF file.

Our Duqu detector toolkit has been downloaded from
more than 12000 distinct IP addresses distributed over 150
countries. The highest number of downloads originate from
Vietnam, followed by the US, France, Iran, India, Poland,
Norway, Hungary, Indonesia, and Great Britain.

4. DISCUSSION
Our investigation highlighted a number of interesting is-

sues in the malware detection process and the general de-
fense mechanisms against malicious software. Most of these
issues relate to the trust we put into software components,
the producers of software and the actors of the anti-malware
industry.

4.1 Code signing
An intriguing feature of Duqu was that one of its ker-

nel level components, the cmi4432.sys driver, had a valid
digital signature that was generated with the private key
of C-Media Electronic Inc., a company from Taiwan. The
certificate of C-Media was issued by Verisign on August 3,
2009. It was a Class 3 certificate that provides the high-
est security level requiring, for instance, physical presence
for authentication purposes in the certificate request phase.
It is very likely that the attackers compromised the private
key of C-Media and used the compromised key to generate
the valid digital signature on the malicious driver. The cer-
tificate was revoked on October 14, as a result of sharing
our Duqu analysis report with Symantec. In this case, the
revocation process was very fast, probably because it was
initiated by Symantec, the owner of Verisign.

Code signing is extensively used today to authenticate the
identity of the producer of a software and the integrity of
the code. A common assumption is that if code is signed
then it can be trusted. As a consequence, many automated
verification tools do not even check signed files, or they rely
on the validity of signatures to filter false alarms.

However, a valid digital signature does not necessarily
mean that the code is trustworthy. Technically, the validity
of the signature only tells the verifier that the code has been
signed by someone who possesses the private key, which does
not exclude the possibility that the key is compromised. In
addition, a valid signature does not tell anything about the
trustworthiness of the signer, even if the key is intact.

These observations are not just theoretical arguments:
signed programs with unwanted features or malicious in-
tent do occur in practice [3]. In fact, there are multiple
ways to get a piece of malware signed. First of all, attackers
can setup a company, obtain a valid code signing certificate
through regular procedures from any top level CA, and then
sign their malicious software. Second, attackers can arrange
the distribution of their software through a reseller that may
put its own signature on it. There are examples for this
sort of operation: for instance, the e-commerce outsourc-
ing company Digital River signs binaries for its customers,
and apparently some of those binaries also include rogue
and malicious code [3]. Third, attackers can steal the code
signing key of an established company either by breaking

in the company’s IT system or simply by bribing an em-
ployee. This is facilitated by storing code signing keys on
developer machines that are connected to the Internet, and
not using password protected storage for those keys or stor-
ing the password in a batch file for convenience; these are
practices that are more common than they should be. Fi-
nally, attackers can break into developer machines and place
their malware in the software that is being developed by the
company before it is signed. Most malicious programs with
a valid digital signature belong to the first category, but
Duqu and Stuxnet illustrate that code signing keys can also
be compromised in practice.

The problem that we face is that the current infrastruc-
ture and practices used for code signing cannot address this
issue effectively. While some CAs have strict authentica-
tion policies when evaluating a certificate request, we are
not aware of any periodic audits after the issuing of the cer-
tificate aiming at the verification of how the private keys
are handled and used by the certificate owner. Similarly,
we have not heard about any case when the certificate of
a software maker was revoked due to its negligence in the
key management and code signing procedures. Therefore,
software companies have no real incentives to follow strict
key management policies, while there is a temptation for ne-
glecting even the basic precautions for the sake of efficiency
and convenience. Another problem is that it is not clear who
actually should perform the auditing of software companies.
Letting the CAs perform the audits would not be scalable,
and it would be too costly for them. In addition, a CA can
revoke the certificates of a company if it is detected neg-
ligent, but it cannot carry out any further actions against
the company, which can then continue its operation and try
to find another CA that would issue certificates for its code
signing keys. So the CA has no incentives to do strict ver-
ifications, because it can lose clients and profit, while less
diligent CAs may prosper in the market.

To summarize, while we believe that, in principle, code
signing is a useful feature as a first line of defense, because
it raises the barrier for attackers, we emphasize that one
should not fully trust code even if it is signed, and we ar-
gue that the practice of code signing today is far from being
satisfactory: there are misplaced incentives and scalability
problems, leading to negligent key management, which then
limits the effectiveness of code signing as a mechanism to
establish trust in software. Finally, we note that these prob-
lems need urgent solutions, because the attackers’ demand
for being able to sign their malware is expected to grow
rapidly in the future due to the fact that unsigned software
can no longer be installed on recent and future versions of
Windows without warning messages, if at all.

4.2 Signature based detection
Signature based malware detection is important, as it is

the most effective way of detecting known malware, however,
Duqu and other recent targeted attacks clearly show that it
is not sufficient. In fact, the creators of high-profile targeted
threats such as Duqu and Stuxnet have the resources to
fine-tune their malware until it passes the verification of all
known anti-virus products, therefore, such threats will basi-
cally never be detected by signature based tools before they
are identified and their signatures are added to the signature
database.

A solution could be heuristic anomaly detection. Indeed,

some anti-virus vendors have already started to extend their
signature based tools with heuristic solutions. An interest-
ing approach seems to be binary reputation heuristics (e.g.,
detecting “rare” binaries). While these techniques are far
from being sufficiently reliable to effectively prevent targeted
attacks, they are certainly a first step away from standard
signature based detection. The basic problem with anomaly
detection based tools is that they generate false alarms, and
it is difficult to filter those false positives in an automated
manner. However, more work on white listing techniques
and cloud based information sharing may improve the situ-
ation. Academic research could contribute a lot in this area,
because the problems require highly innovative solutions.

We should also mention that, in some application areas,
false positives may be tolerated better, because missing a
real attack has devastating consequences. In particular, we
believe that in the domain of critical infrastructures, such
as nuclear power plants, chemical factories, certain trans-
portation systems, and so on, where a successful logical at-
tack on the connected IT infrastructure may lead to a fatal
physical accident, false positives should be tolerated, and
there should be expert personnel available to handle them.
This observation motivated our work on the Duqu detector
toolkit. While that toolkit is somewhat customized for de-
tecting Duqu variants, in the future, we expect more general
tools based on similar principles.

4.3 Information sharing
Once a high-profile incident like the Duqu malware infec-

tion is detected, the most important tasks are to: (a) contain
and mitigate the incident locally and (b) to disseminate the
intelligence information to mitigate the global effects of the
malware. When we were asked to handle the intrusion by the
Duqu malware at the European firm, we quickly observed
the anomalies and did a thorough investigation to contain
the malware locally. As the investigations unfolded, we dis-
covered relation to Stuxnet and realized that the threat is
global. Thus we advocated a security response that involved
contacting reputable security vendors for global information
dissemination and threat mitigation.

The biggest challenge in threat mitigation was to establish
trust between the client firm and selected security vendors
for information sharing. Although there is an established
industry standard among security vendors for sharing infor-
mation there is an important and seemingly unbridgeable
gap between the end users and security vendors. Clearly,
the firm’s driving incentive was to decrease the impact of
the incidents at their own premises. We emerged as media-
tors between these parties and convinced the firm to enter
the information and sample sharing process with the most
reliable security vendors. Anecdotal evidence suggests that,
unlike in our case, security vendors are often unable to ob-
tain forensics information even when their product detected
infection. Given the importance of targeted attacks, we be-
lieve that increasing trust to enable forensics is a key enabler
of global incident response.

When we discovered the dropper in an MS Word doc-
ument obtained from our client, we immediately realized
that this critical information needs to be shared with secu-
rity vendors to aid their detection efficiency. Nonetheless
there was a key issue with the dropper file: it contained
sensitive information about the client and we did not have
the expertise to sanitize the file such that it becomes appro-

priate for sharing. Given the trust that the company had
in us, and the trust accumulated between Symantec and us
during the handling of the incident, we took advantage of
our role as a mediator, and we convinced our client to let
Symantec produce an anonymized dropper for sharing. This
dropper sample was critical in proving the existence of the
zero-day exploit and motivate Microsoft to handle the case
with high priority. To the best of our knowledge, only one
other dropper has been discovered since.

Clearly, the solution we followed does not scale. Accord-
ing to our experience, very few end-user firms are able to
produce sanitized security information that can be shared
for global incident response. While security vendors possess
the knowledge to produce sanitized samples, the process is
demanding and highly personalized at the moment. This
implies again that trust needs to be established between end-
users and security experts who are able to prepare forensics
evidence and protecting the firm’s identity at the same time.
Furthermore, to ease the load on these experts, we need to
seek semi-automatic production of anonymized forensics ev-
idence as a key challenge.

5. CONCLUSIONS
The main message of this paper is that the white hat com-

munity should catch up on all fronts: (i) code signing as a
preventive measure has limitations and the current practice
raises questions concerning the effectiveness of code signing
as a means to establish trust in software, (ii) more research
should be devoted to heuristic anomaly detection tools to
complement signature based scanners, and (iii) new concepts
and mechanisms are needed that help information sharing
between victims of incidents and the anti-virus industry to
help incident handling and forensic analysis.

6. ACKNOWLEDGMENTS
We are thankful to Eric Chien and his colleagues at Syman-

tec, and especially, in the Security Response team for the
wonderful collaboration at various stages of the Duqu anal-
ysis project and for the sanitization of the dropper file. We
are thankful to Alex Gostev and Costin Raiu from Kasper-
sky for the useful discussions and for their positive feedback
on our Duqu detector toolkit. We are also thankful to Peter
Szor from McAfee for his support. Finally, we are thankful
to our client for their positive attitude towards the research
on Duqu.

7. REFERENCES
[1] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi.

Duqu: A Stuxnet-like malware found in the wild.
Technical Report Version 0.93, CrySyS Lab, BME,
October 14 2011.

[2] A. Gostev and I. Soumenkov. Stuxnet/Duqu: The
evolution of drivers. Technical report, Kaspersky,
December 28 2011.

[3] J. Niemelä. It’s Signed, therefore it’s Clean, right?
Presentation at CARO 2010, available at
http://www.f-secure.com/weblog/archives/Jarno_

Niemela_its_signed.pdf, 2010.

[4] Symantec Security Response. W32.Duqu: The
precursor to the next Stuxnet. Technical Report
Version 1.0, Symantec, October 18 2011.

